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CHAPTER 1. INTRODUCTION 

Because of the demand for more powerful computers, interest in multiprocessor 

systems has increased rapidly in recent years. Many projects are investigating obtain­

ing an order-of-magnitude higher performance by using replicated low-cost hardware 

units [35] [53]. After dividing and distributing computations into subtasks, several 

processors can work for the same task concurrently and hence the overall throughput 

can be accelerated. 

Because the computations can be performed in several different places, multi­

processor systems require additional control mechanisms to coordinate the execution. 

Included are how to divide a task into subtasks (partitioning), how to allocate re­

sources (scheduling), how the subtasks interact (communication), and how to en­

force time-ordering constraints (i.e., sequencing) among the subtasks (synchroniza­

tion) [16]. Since these operations do not contribute any "useful" computations to 

the original task, they are just overhead associated with concurrent execution. To 

achieve good performance, the granularity/overhead ratio should be reasonably large; 

i.e., the overhead should be small in comparison to the total operations performed in 

the subtask. 

Controlling fine-grain parallelism is difficult since it cannot tolerate complicated 

or time-consuming scheme for scheduling, communication or synchronization. Thus, 
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most fine-grain multiprocessor systems, such as SIMD or vector computers, exploit 

only "structured" fine-grain parallelism in which massive, homogeneous operations 

can be initiated by simple control constructs. There are very few multiprocessor 

systems attempting to exploit irregular fine-grain parallelism, such as those found 

in symbolic-oriented applications, because of the potentially high overhead and the 

programming difficulty. 

One approach to exploiting irregular parallelism is focused on using functional 

programming languages. Because of the lack of side-effects, functional languages do 

not impose any ordering constraints [17] [27], and hence do not impose severe re­

quirements on synchronization and communication. However, despite their attractive 

properties at the abstract level, functional languages have not yet proven competitive 

because of their slow execution on von Neumann architectures. 

In recent years, a new implementation model for functional languages, known 

as combinator reduction [56], has received attention. In this paradigm, we translate 

functional programs into a form that does not contain any bound variables. Instead, 

we employ a special kind of operator, called a combinator, to denote where the vari­

ables were located before they were removed. Since variables are eliminated, there 

is no need to maintain a centralized, global environment. Therefore, the combinator 

paradigm offers a better opportunity to exploit potential fine-grain parallelism. 

The work described in this dissertation investigates extending combinators to 

include the control of fine-grain parallelism. To accomplish this, we first develop a 

new control mechanism that can initiate irregular fine-grain parallelism, and then 

evaluate its effectiveness through simulation of some representative benchmark pro-
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grams. The major effect of the extended control mechanism is to override the original 

lazy semantics by augmenting proper "eagerness" information. We have chosen to 

focus on Turner's SASL language due to its simplicity and fully-functional nature. 

Our benchmark programs were annotated with the new control information and then 

translated to the proper combinator control tags by a new set of optimization rules. 

Simulation results show that this scheme can extract a significant amount of un­

structured parallehsm and is particularly effective on the irregular manipulation of 

lists. 

The remainder of this dissertation is organized as follows: Chapter 2 provides 

necessary background information on combinators and reviews related research work; 

Chapter 3 describes the extended multiprocessor combinator system including the 

annotation of SASL programs, the control tags of combinators and the extended 

compiling algorithm; Chapter 4 describes the design of the simulator; Chapter 5 

studies the effects of the proposed scheme via the simulation of a set of selected 

benchmark programs; and the last Chapter gives conclusions of this research and 

outlines the potential future work. 
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CHAPTER 2. BACKGROUND 

In this chapter, we first introduce the relevant concepts of functional languages, 

combinators, A-calculus and the bound variable abstraction mechanism. Then, we 

review related research projects. 

Functional Languages 

Functional languages are based on the formal study of mathematical functions 

and function application [17] [27]. A functional program can be regarded as a collec­

tion of function definitions, and its execution as repeated function application. Unlike 

programs written in procedural languages, functional programs do not need to ex­

plicitly specify the order and the state of execution because the control is implicitly 

imbedded in the function application mechanism. The elimination of the notion of 

order of execution and machine state has a significant impact on the language's syn­

tax and semantics. Syntactically, because the major "bulky" structures of procedural 

languages are removed [5], the syntax of a functional language is simple, clear and 

expressive. Semantically, because ordering constraints are removed, the meaning of a 

functional program can be interpreted as simple term substitution [17]. The following 

SASL examples illustrate the general style and capability of functional languages: 

I I example 1 : Fibonacci number 
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fib 1 = 1 

f i b  2 = 1  

fib n = fib (n-1) + fib (n-2) 

1 I example 2: Insertion sort 

isort 0 = 0 

isort (a:x) = insert a (sort x) 

insert a () = a:NIL 

insert a (b:x) = a<b -> a:b:x ; b:(insert a x) 

I I example 3: Homogeneous operation on a list 

map f 0 =0 

map f (a:x) = (f a) : (map f x) 

I I example 4: Fibonacci list 

fib_list = f_aux 1 1 

f_aux a b = a:(f a a+b) 

1 I example 5 : Increment by one : 

plus X y = X + y 

inc = plus 1 

Despite the simplicity of these examples, they show many important properties, 

some of which are frequently encountered in functional languages, such as recur­

sion, pattern-matching, higher order argument, infinite data structures, and partially-

evaluated function. 
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A-calculus 

Although different functional languages may have totally different syntactic struc­

tures, all of them are "sugared" forms of A-calculus. Because of the compactness of 

a A-expression, A-calculus will be used as our base language. The SASL programs 

shown in the previous section and in the later chapters should be treated as a syn­

tactic variation of A-calculus rather than a new language. We will use A-expressions 

and SASL interchangeably in the remainder of this thesis. 

A-calculus is a formal system used to describe functions and function application. 

Its syntax and operation semantics are formally defined in the following paragraphs. 

Syntactically, a A-term (or a A-expression) can be defined inductively as: 

• Every constant is a A-expression (called a build-in constant, e.g., numbers). 

• Every variable is a A-expression. 

• If M and N are A-expressions, then MN is a A-expression. MN is called an 

application^ where M is the applicator (or, informally, function definition) and 

N is the applicant (or actual parameter). 

• If M is a A-expression and x is a variable, then \x.M is a A-expression. \x,M 

is called an abstraction^ in which x is the bound variable (or formal parameter) 

and M is the function body. 

• If M  is a A-expression, then { M )  is also a A-expression. 

The major operation in A-calculus is /^-reduction, which substitutes all free oc­

currences of a formal parameter in the function body with an actual parameter. 
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Formally, /^-reduction can be defined as 

{ \ x . E ) M  -  E [ M l x \  

where E[Mlx\ is the expression E with M substituted for free occurrences of x, 

E[M/x] can be defined inductively as: 

• x [ M l x ]  returns M .  

• where c is any variable or constant other than z, returns c. 

•  [ E F ) [ M j x ]  returns E [ M l x ]  F[M/.r]. 

•  [ \ x . E ) [ M I x \  returns \x.E (i.e., x is bound variable). 

•  ( A y . E ) l M / x j ,  where y  is any variable other than x ,  returns X y . E [ M / x ]  if x  is 

not free in E or y is not free in iV/, and returns \y,(E[z/y])[Mlx] (where z is a 

new variable name) if x is free in E and y is free in AI. 

/^-reduction essentially defines the execution of a function application in which 

the formal parameters are replaced by the actual parameters. Under this interpreta­

tion, the A-abstraction Xx.E can be thought as a function, M as an actual parameter, 

and the /3-reduction {\x.E)M as applying the function to an argument. Because of 

the reduction, a A-expression of the form [\x.E)M is normally called a Tedex (for 

reducible expression). If an expression contains no redexs then evaluation is com­

plete, and the expression is said in normal form. 

In the practical system, there always exist some built-in functions that can fur­

ther reduce an expression otherwise considered to be in its normal form. For example, 
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we cannot apply /3-recluction to + 2 3 but the expression can be further reduced to 5 

by the definition of + . The operation of these functions constitutes another form of re­

duction, known as ^-conversion (and the built-in functions as 6-rules). The definition 

of 5-rules is ad hoc and system dependent; they normally include primitive arithmetic 

operations or predicates. 5-conversion sometimes constitutes another phase of the ex­

ecution of a function application in that it reduces the expression after the actual 

parameters have been substituted into their proper positions via /^-reduction. For 

our purpose, it is convenient to extend the definition of redex to the expression that 

can be applied by either /^-reduction or 6-conversion. 

Conventional implementation of functional languages 

Since function application (/^-reduction) is the only control mechanism for func­

tional languages, it governs the implementation of functional systems. Unlike pro­

cedural languages, purely functional languages have no corresponding language-level 

assignment and sequencing constructs. The implementation has to add necessary 

instructions to control the order of execution and manage the allocation and deallo­

cation of memory. 

From an implementation point of view, function application can be divided into 

two basic phases: first, the actual parameters are distributed to the positions held 

by the designated bound variables (i.e., perform a reduction); and second, the 

substituted expression is evaluated by further invoking function application or by 

applying 5-rules so that the expression is reduced to normal form. 

The traditional implementation model for functional languages is based on the 
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environment model. In this scheme, the system maintains a dynamic symbol-table 

that contains a mapping from formal parameters to actual parameters. During the 

first phase, the system establishes a table and puts the actual parameters into the 

corresponding entries. These values can be retrieved during the evaluation process 

of the second phase. The major complication of this approach is the resolution of 

variable names, which comes from the last rule of E[M/x]. Because duplicated names 

are allowed, it is vital to keep track the scope of variables for the correct operation of 

recursion, non-local access to variables and higher order structures. These complex 

access schemes greatly complicate the structure of the symbol table, and increase the 

time required to construct the closure. Due to the large overhead for environment 

operations, the execution of functional programs is quite slow. In order to make the 

implementation more efficient, it is desirable to eliminate the environment, which 

leads us to the combinator model discussed in the next section. 

Combinators 

Combinators are used to describe the general properties of operators and the 

composition of operators [31] [12]. Although combinators have their own theoretical 

interest and are equivalent to A-calculus in terms of the representation power, we 

primarily employ them as a model to implement functional languages and treat them 

as a low-level representation of A-calculus (much like the relation between high-level 

languages and machine instructions). 

Formally, a combinator is a A-expression that contains no occurrences of free 

variables [31]. Since there are no free variables, the application of a combinator de­
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pends only on the values of the actual parameters and can be treated as a rewrite 

rule that makes local transformations. For example, consider the A expression "5 = 

X f g x . f x ( g x ) " .  5  i s  a  c o m b i n a t o r  s i n c e  / ,  g  a n d  x  a r e  l o c a l  w i t h  r e s p e c t  t o  X f g x . f x { g x )  

T h e  c o r r e s p o n d i n g  r e w r i t e  r u l e  i s  S f g x  =  f x { g x ) .  

With a set of carefully selected combinators, any A-expression can be transformed 

into a combinatory expression. There are a variety of ways to construct a combinator 

set. For example, the simplest set is composed of only two combinators [31], and the 

complex sets contain an infinite number of dynamically-created combinators [1] [34] 

[33]. 

The operation of a combinator-based programming system consists of a compi­

lation phase and an execution phase. In the compilation phase, a A-expression is 

transformed to a combinatory expression by abstracting the bound variables. In the 

execution phase, the expression is evaluated (reduced) according to the corresponding 

rewrite rules. By the Church-Rosser Theorem [31], sub-expressions of a computation 

may be evaluated in any order because they will end up with the same result as long 

as the computation terminates. 

In the remainder of this section, we demonstrate the operation of a simple 

{5, A',/}-based combinator system. We will also examine the intuition behind these 

combinators, and then describe Turner's system, which will be used as the basis for 

our system. 



www.manaraa.com

11 

A system based on { S , K , I }  

To demonstrate the operation of combinators, we use the simple { S , K , I }  com-

binator set [31] as an example. The definitions of S,K,I are: 

S  =  X f g x . f  X  [ g  x )  

K  =  X x y . x  

I  =  X x . x  

and their corresponding rewrite rules are: 

S f g X = f X (g x) 

K X y = X 

I X = X 

The abstraction algorithm for {5, A', 7} can be recursively described by three 

rules [56]. The notation"A x [e]" denotes abstracting variable x from expression e. 

A X [f g\ = S (A .c [/]) (A z [g]) 

A X [c] = K c if X does not occur in c 

A X [.-c] = I 

The abstraction and execution (application) procedure can be demonstrated by 

the simple example, / 2, where / = Xx. * xx. The abstraction of / is: 

A .T [/] = A z [Az. * x x ]  

= 5 (A X [* .t]) (A X [a:]) 

= 5 (5 (A X [*]) (A X [z] ) I 

=  s { S { K * ) i ) r  

Note that the final expression does not contain an occurrence of the variable x. 

The normal order application of / to 2 is: 



www.manaraa.com

12 

/2 = S  ( S  { K * )  I )  1 2  

= (5 (A'*) / 2) (7 2) 

= ((JT * 2) (7 2)) (7 2) 

=  ( * ( 7  2 ) )  ( 7  2 )  

=  ( * 2 ) ( 7  2 )  

= * 2 2 

= 4 

The intuition behind combinators 

Although the previous abstraction and rewrite rules are fairly simple, they lack 

the intuitive clarity of A-calculus. For example, it is difficult to see that the combi­

natory expression "/ = S {S {K *) I ) I" is equivalent to "/ x = x * .c". We will 

attempt to provide a more comprehensible interpretation in this sub-section. 

The key observation in the process of function application is the role played 

by the bound variables (i.e., formal parameters). They are involved only in the 

distribution phase and play no roll in the evaluation of the expression. In other 

words, bound variables only serve as symbolic place holders that assist the distribution 

of actual parameters. Therefore, they can be removed if the actual parameters can 

be distributed in another way. Combinators are an alternative mechanism to perform 

this task. Instead of using variables, actual parameter distribution is guided by a 

sequence of combinator instructions. 

One intuitive interpretation for combinators is to treat them as director strings 

[42], that indicate the actual parameters should be distributed to their places in the 

expression. This method differs from using bound variables, in which the designated 
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places are explicitly indicated by variables. The difference between the two schemes is 

similar to how we tell a taxi driver about our destination: we can express it explicitly, 

such as "1234 Oak street • • or by a sequence of "direction instructions", such as 

"turn left, go straight, turn right • • 

The meaning of {5, A',/} can be reinterpreted under this concept. The abstrac­

tion algorithm can be rewritten as: 

• curry the function definition and construct a binary tree from the curried func­

tion, with the root representing function application (denoted by the left 

child as the applicator, and right child as the applicant. 

• annotate the nodes according to the following method: 

- if a node represents function application, annotate it with 5. 

- if a node is same as the variable being abstracted, replace it with I. 

- otherwise, annotate it with K. 

• "list" the tree, with additional parentheses for each subtree, by pre-ordered 

traversal. 

The execution of the rewrite rules also can be interpreted under this concept. When 

an actual parameter arrives, it is distributed according to the annotation (combinator 

direction) of the node: 

• if the tag is 5, redistribute the parameter to the two child branches. 

• if the tag is K, ignore the parameter. 
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• if the tag is /, replace this node with the parameter. 

After the parameters are distributed, reduction can proceed according the 6-rule of 

the operator. Using the previous example of / 2, the process of abstracting x from / 

is shown in Figure 2.1, and the application of / to 2 is shown in Figure 2.2. 

S. S. S. 

/ \ / \ / \ 
* X X => (* . x) . X => . X => S. I => S. I 

/ \ / \ / \ 
* X * X K* I 

Figure 2.1: Abstraction of x from * x x 

S.2 

/ \ 
S. I 

/ \ 
K* I 

=> 

/ \ 
S.2 12 

/ \ 
K* I 

/ \ 
=> . 2 

/ \ 
K*2 12 

/ \ 
=> . 2 

/ \ 
* 2 

=> 4 

Figure 2.2: Application of S  { S  ( K  *) /) / to 2 

Under the new interpretation, the meaning behind the abstraction and rewrite 

rules is more clear: 5 is the distributor, which distributes the actual parameter to 

the two child branches; / is the identity function, which reserves a space for the 

actual parameter; and K is the eliminator that eliminates the arrived actual param­

eter. During the function application, the actual parameter is sent to its place(s) 

through the tree via the guidance of the {5, A',/} set; after the parameter reaches 

the designated positions, the expression tree can be evaluated accordingly. 
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Regular Combinators 

I X = X B f g X = f {g x) 
K  X y  =  X B i k f g x  =  k { f { g  .r)) 
S f g X = f X [g x) C f g x = f X g 
S l k f g x  =  k { f  x )  { g  x )  C I  k  f  g  x  -  k  { f  x )  g  

List-Oriented Combinators 

Sp f g X = {f z) : (g x) 
Bp f g X = f : (g x) 
C p  f  g  X =  i f  x )  : g  

Figure 2.3: Definitions of Turner's Original Combinators 

Turner's combinator system 

Although the previous {5, A',/}-based system is simple and elegant, it is very in­

efficient because the size of the compiled combinator expression becomes unacceptably 

large (0(2^) complexity) and may require a large number of reductions during the 

evaluation. In late 1970s, Turner introduced several new combinators, B, C, 51, M, CI 

(and Sp,Bp,Cp for list operation) and a set of optimization rules for these combina­

tors. His scheme dramatically improves the complexity to 0(7Vlog N) on average, and 

makes combinator-based systems feasible. The rewrite rules and the corresponding 

abstraction algorithm are shown in Figure 2.3 and Figure 2.4 respectively. The major 

extension over the {5, /f,/}-based system is the additional optimization phase in the 

compiling algorithm. This phase employs a set of optimization rules that recognize 

predetermined patterns in the combinator expression and reduces it to a simpler form. 

In the other words, the notation O in Figure 2.4 can be thought as a function with 

combinator expressions as its domain and range. 
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Abstraction Rules 

A X [hd •. tl] = O  [ S p  ( A  X  [ h d ] )  (A x  [f/])] 
A X [f g] = O [5 (A X [/]) (A x [g])] 
A x [.r] = / 
A x [î/] = K y if X does not occur in y 

Optimization Rules for Regular Combinators 

o Is (A- n ni ° f «' *>1 = ^1/ 

Optimization Rules for List-Oriented Combinators 

0 [ S p { K  f ) { K  g ) ]  =  K  i f  : g )  
O [ S p  ( K  f ) g ]  =  B p f  g  
O  [ S p  f  { K  f l - ) ]  =  C p  f  g  

A a; [/]: Abstracting x from /. 

O [e]: Optimizing expression e. 

Figure 2.4: Turner's Original Abstraction Algorithm 
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The actual implementation of Turner's system can be explained by its code rep­

resentation and its evaluator. In this system, a combinatory expression is represented 

by a binary tree with the root denoting the function application, the left child as 

the applicant, and the right child as the applicator. Because the left branch chain 

of application nodes has special significance, it is called a spine. Similarly, the node 

at the end of the spine is called a and the expressions along the spine are ribs. 

With this kind representation, the operation of the evaluator is fairly simple and can 

be described by the following pseudo code: 

while TRUE 

begin 

while (current node is not tip) 

begin 

make left branch the current node; 

end 

if (tip is not a redex) 

return current subgraph; EXIT; 

if (the strict arguments have not been evaluated) 

evaluate the corresponding ribs ; 

modify the graph corresponding to rewrite rules or built-in functions; 

end 

Despite its simplicity, this evaluator implicitly performs lazy evaluation; i.e., it 

evaluates only the actual parameters when their values are needed rather than always 

evaluating them when the function is applied. Furthermore, it evaluates the actual 

parameters at most once. The final results of this evaluator is not in normal form 

since the non-strict branches are not required to be evaluated and may contain some 

redexs. Instead, the evaluator only returns an expression that contains no top-level 

redex, which sometimes is known as weak head normal form [37]. Since the remainder 

of thesis is discussed in this "lazy" context, for convenience, we will use the term 
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"normal form" to represent the term "weak head normal form". 

Turner's scheme provides a simple but effective way to use combinators to im­

plement functional languages. In subsequent chapters, we will extend Turner's com­

binators for use in a multiprocessor environment. 

Literature Review 

In this section, we will give a brief overview of two relevant topics, namely 

combinator-based functional systems, and non-combinator-based functional multi­

processor systems. 

Functional systems based on the combinator paradigm 

Combinators were introduced by Schofinkel in the early 1920s and re-discovered 

later by Curry. Although their theory is well understood [12] [31], their application as 

an abstract implementation model for functional languages was not introduced until 

late 1970s. Turner first utilized this idea and implemented a virtual system using the 

{S,K,I,B,C'} combinator set [56] [55]. Since then, the combinator paradigm has 

been widely used in the implementation of functional languages. 

Combinator sets vary widely, but can be divided into three basic groups. The first 

group contains only a finite number of combinators. The second group is composed 

of an infinite number of combinators that are normally divided into several indexed 

families. The third group is compromised of dynamically created combinators whose 

rewrite rules are defined by the program expressions. 

Most sets in the first group are variations or extensions of Turner's set [38] 
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[24]. Because of their simplicity, it is possible to incorporate the reduction rules 

into the hardware of the machine as part of its instruction set. There are several 

machines built around these sets: SKIM [11] and its successor SKIM II [54] employ 

conventional bit-slice logic; NORMA [52] utilizes more sophisticated hardware which 

includes specialized service processor, graph processor, allocator, and graph memory; 

and CURRY [50] implements the entire reduction engine in a VLSI chip. 

A slightly different scheme known as director strings employs director symbols 

{" I \ i/. as its basic combinator set [42|. Despite its appearance, it is based on the 

concept similar to Turner's long-reach combinators. A message-passing multiproces­

sor system, COBWEB [4] [6], has been built to support this scheme. An additional 

combinator P is used to control eager evaluation [23]. 

A major problem with finite combinator sets is their poor efficiency. For a A-

expression of length n, the length of compiled combinatory code is 0{v?) in the 

worst case [38], and on the average [28]. While the required space can be 

reduced by special coding techniques [47] [48], there is no effective way to decrease 

the number of reduction steps. Several empirical studies [26] [51] suggest that there 

is considerable run-time overhead in using a finite combinator set. 

The sets in the second and third groups are aimed at constructing more compact 

0(nlogn) combinator expressions. Sets in the second group extend simple combina­

tors into "long-reach" ones that can operate on any abstracted variable. Abdali [1] 

i n t r o d u c e d  a  c o m b i n a t o r  s e t  c o n t a i n i n g  t h r e e  f a m i l i e s  w h i c h  e x t e n d  t h e  A ' ,  I  a n d  B  

into the A'n ,and families. Knox [45] further expanded it to include the 5"^, 

C^, and families for additional optimization. Castan et al. [8] proposed 
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a different set comprising Qn, I'Fn,} and claimed that parameters can 

be distributed faster. Because of the regularity of these sets, they can be implemented 

in the hardware as machine instructions. However, since a CPU implements a finite 

instruction set, the maximal n is restricted. The MaRS computer [9] [46] [10] is a 

message-passing multiprocessor system based on the Castan's set. 

Combinator sets in the third group do not have fixed combinators. Instead, 

the abstraction algorithm creates the required combinators during the compilation. 

Hughes [34] first proposed a technique to create the required combinators (called as 

super combinators) from functional programs. Hudak and Goldberg [33] extended it 

to serial combinators, which take into account some pragmatic issues, and claims that 

they have "optimal" granularity. Due to the dynamic nature of this approach, sets 

in this group are not feasible for hardware implementation and therefore are used as 

an intermediate form during code generation. Serial combinators have been used to 

generate code for the G-machine [36], an abstract graph reduction processor. The 

G-machine is implemented in hardware [43] and reportedly can achieve 3.6 MIPS 

performance [44]. Several multiprocessor systems also employ super combinators, 

including GRIP [49] and Flagship [59]. Serial combinators have also been simulated 

on a message-passing multiprocessor system (DAPS) [33], and implemented in Alfalfa 

[18], a hypercube system based on the Intel iPSC. 

Functional multiprocessor systems based on other paradigms 

There are several other approaches for building a functional or a quasi-functional 

programming system, including a non-combinator-based graph-reduction paradigm. 
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the environment paradigm, and the dataflow paradigm. Since these approaches cover 

a wide variety of systems, our literature review is limited to multiprocessor systems. 

A more general review on sequential systems can be found in [58] [32] . 

The non-combinator-based graph-reduction paradigm employs the basic graph 

reduction concept, but without the assistance of combinators [37]. ALICE [13] [25] 

is the first parallel system based on graph reduction. It is a shared-memory system 

connected by a crossbar switch and two rings. Rediflow [40] [39] is a message-passing 

system connected as mesh. A pressure gradient load balancing mechanism is used 

to distribute the tasks. Its successor, Rediflow II, adopts the PSCED architecture 

(Process, Stack, Control, Environment and Dump) for its reduction processor and 

employs a more sophisticated communication unit called Redilink [41]. 

The environment paradigm is used in LISP systems [3]. Since most LISP systems 

contain constructs that can cause side-effects, they are at best only quasi-functional 

systems. SPUR [29] is a shared-memory system targeted for Common LISP. It con­

tains 6 to 12 specialized RISC processors that provide high-level support for LISP 

constructs. The Multilisp [20] [21] system employs a special control/synchronization 

construct known as a future. Multilisp has been implemented on the Concert system 

[19], which is a shared-memory architecture with 28 MC68000 processors connected by 

a Ringbus. A more sophisticated processor, known as M AS A (Multilisp Architecture 

for Symbolic Applications) [22], also has been proposed. The Connection machine 

[30] is a message-passing system containing up to 64,000 single bit processors. It is a 

SIMD machine and is aimed at structured symbolic operations. 

Dataflow systems are based on the data-driven model. Despite their syntactic 
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differences, dataflow languages and functional languages are semantically equivalent. 

However, since data flow systems are normally targeted at numerical applications 

and lack a general, list-like structure, they are not appropriate for most symbolic 

computing applications. 

Thesis Problem Statement 

The effort of this research is towards developing an effective mechanism to control 

parallelism for Turner's combinator system. To achieve our goal, we will extend the 

original scheme by augmenting combinators with eagerness information to control 

concurrent execution, and then evaluate the its efficiency through simulation of an 

idealized shared-memory multiprocessor system. The major differences between our 

approach and the COBWEB system are: fiirst, we use Turner's original compiling 

scheme so that we can take full advantage of its optimization phase; and second, 

we focus more on a shared-memory based multiprocessor system rather than on a 

message-passing system. 

Despite the elegant design of Turner's system, it is primarily designed for sequen­

tial execution. As we observed in the previous section, the evaluator is sequential and 

is fully-lazy; it will not initiate the evaluation of the rib until its value is required. 

Although this works well in a sequential system, it is unacceptable for a multiproc­

essor system where the speedup depends on the early initiation of the execution of 

subtasks. An alternative way is to make the evaluator eager; i.e., initiate all the ribs 

encountered in the unwinding of the spine. This approach is sketched out below: 

while TRUE 

begin 
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while (current node is not tip) 

begin 

initiate the evaluation of rib; 

make left branch the current node; 

end 

if (tip is redex) 

return the subgraph; EXIT; 

if (the evaluation of the strict arguments have not been completed) 

wait for completion; 

modify the graph by corresponding rewrite rules or built-in functions; 

end 

Although the modified evaluator is simple, it is not satisfactory for several rea­

sons. First, since the evaluator initiates all the reducible expressions, it introduces 

some useless computation and tends to waste system resources. Second, and more 

importantly, it overrides SASL's lazy semantics and may introduce non-terminated 

computation. Because many fundamental constructs of SASL, such as stream and 

infinite data structures, depend on laziness, unconditional eager evaluation is unac­

ceptable. 

A hybrid approach would seem appropriate, where one can initiate eager eval­

uation only on selected expressions and can preserve the lazy semantics for other 

expressions. In other words, we need to add a new mechanism that can specify which 

expression is to be eagerly evaluated and perform eager evaluation during the exe­

cution accordingly. To accomplish this goal, we extend Turner's work in two ways. 

First, we augment SASL and the combinator set to incorporate parallelism control 

information, and we expand the abstraction algorithm to translate and propagate 

this new information. Second, we modify the virtual machine layer from a single 

processing system to a multiprocessor system that contains multiple reduction units. 

The scope of this study can be best explained by Figure 2.5 in which Turner's 
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Turner's Original System The Extended Multiprocessor System 

SASL program 

Virtual uniprocessor 

Combinatory code 

Algorithm Algorithm 

SASL program 
eagerness 

augmentation 

Combinatory code 
eagerness 

augmentation 

Virtual multiprocessor 

Figure 2.5: The Layer Model for the Original and the Extended System 
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original system and the proposed extensions are shown. Turner's original scheme can 

be thought as a programming system composed of four layers: problem description 

(or algorithm), high-level language (or program), combinatory code, and the virtual 

machine. The program layer is the functional language SASL, and the combinatory 

code layer consists of Turner's basic 5, A', I. B. C combinators and built-in operators. 

The combinatory code is executed in an idealized sequential reduction machine repre­

sented by the virtual machine layer. Turner's compiling algorithm is used to translate 

SASL to combinatory machine code. 

In the extended system, the proî^ram layer and the combinatory code layer will 

be similar to those of Turner's original system except that they are augmented with 

parallelism-controlling constructs that guide the concurrent execution. The virtual 

multiprocessor layer represents an idealized system which contains an unlimited num­

ber of reduction processors and a global memory with infinite bandwidth. 

Although the combinator paradigm is not limited to a special class of computa­

tions, our studies will concentrate only on symbolic-oriented applications: i.e., those 

applications whose major computations are dedicated to sophisticated searching and 

matching algorithms, and to the construction and manipulation of list-structured 

data. This class of applications differs dramatically from the conventional numerical-

oriented applications in that while the later is more structured and predictable and 

involves only uniform array structures, the former shows less regularity, tends to 

be data-driven and contains lots of "environment manipulation'' (such as function 

call/return, suspension/resumption, and recursion). Because of these run-time char­

acteristics, extracting and controlling the fine-grain parallelism in symbolic applica­

tions is difficult. 
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CHAPTER 3. EXTENDING THE SASL SYSTEM FOR PARALLEL 

PROCESSING 

As discussed in the previous section, the goal of extending the SASL system 

was to develop a control mechanism that can initiate eager evaluation on selected 

expressions. To achieve this goal, we added control information to the original SASL 

system to override the lazy semantics. This new information was added to both the 

program layer and the combinator layer. Also, the compiling algorithm was expanded 

so that it can propagate this information to the remainder of the system. In summary, 

to expand the original SASL system so that it utilizes multiple processes, three major 

extensions were made: 

• add extra control information to selectively initiate eager evaluation by anno­

tating SASL programs. 

• employ a tagged-node scheme in the combinators to incorporate this control 

information. 

• extend Turner's compiling algorithm to propagate this control information from 

SASL programs to the combinatory code. 

Because list manipulation is an essential ingredient of functional programs, these 

modifications cover both function applications and list constructions. The following 



www.manaraa.com

28 

sections describe the three extensions in detail. 

Annotating SASL Programs 

The extended SASL language needs a new construct to specify selective initiation 

of eager evaluation. Because our system targets fine-grain parallelism, this construct 

should be kept simple and should not introduce any complicated synchronization or 

communication. Although this is difficult for conventional multiprocessor systems, 

it can be easily accomplished in a functional language-based multiprocessor system 

because the execution order is largely irrelevant. According to the Church-Rosser 

Theorem, expressions evaluated under different orders will converge to the same nor­

mal form provided the evaluations terminate. Thus, instead of specifying detailed 

control information, functional languages need only to provide a notation to indicate 

how the corresponding expressions are evaluated. 

In our extended system, the symbol is employed in SASL to specify the 

additional control information. The modified SASL language is the same as the 

standard version except that an application may be annotated as being eager by 

placing in front of it. Note that list constructions can be annotated as well as 

function applications. 

Annotating function application 

The annotation of a function application is similar to the scheme proposed by 

Burton [7], although our scheme is modified to fit the syntax of SASL. Here, each 

function application in the expression will be eager (using a or lazy (by de-
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tion body) and applicant (argument), and hence we can speed up the execution of 

the program provided the applicant value is eventually required. Consider the eval­

uation of / X. In the lazy mode, the evaluation of x will not be initiated unless the 

evaluation of / is completed and the value of x is required. On the other hand, if the 

application / x is annotated as eager (i.e., @ (/ .%;)), the evaluations of / and x will 

be initiated simultaneously. Because expressions in SASL are written in curried form, 

this scheme can be easily incorporated into SASL's original framework. For example, 

consider / 3 4, where 

f X y = {{if X > y then * else -r)@(* x a:))@(* y y) 

The applications inside the expression { i f  x  >  y  t h e n  *  e l s e  + ) ,  ( *  x  x )  and { *  y  y )  

are lazy, but the applications between them are eager. The effect of the eager anno­

tations change the evaluation order from 

( / 3  4 )  = >  { { i f  F A L S E  t h e n  *  e l s e + )  { *  3  3 ) )  { *  4 : i )  ^  { + { *  3 Z ) )  { *  4  4 : )  

=> (+ 9) (* 4 4) =• (+ 9) 16 =• 25 

to 

{ f  3  4 )  = >  { { i f  F A L S E  t h e n  *  e l s e  +) (9) (16) =j- (+ 9) 16 25 

Because the annotation specifies that some expressions can be eagerly evaluated, their 

evaluations are invoked earlier and thereby speed up the entire computation. 
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Annotating list construction 

Evaluating a function over non-flat domains (such as list) differs from that over 

flat domains (such as integer, boolean, etc.). While the later always returns a value in 

normal form, the former can be evaluated to several different "degrees" [2]. Therefore, 

the evaluation of a list expression needs to specify not only how the expression should 

be evaluated (i.e., eager or lazy), but how much of the expression should be evaluated. 

Consider the following example: 

map f 0 = () 
map f 1 = f (hd 1) : map f (tl 1) 
sq X = x*x 
testlist = map sq (2,3,4,5) 

According to the "degrees" of evaluation, testlist can be evaluated to various 

forms: 

•  s q  2  :  m a p  s q  (3,4,5) 

• 4 : map sq (3,4,5) 

•  { s q  2, s q  3, s q  4, s q  5) 

• (4,9,16,25) 

The possible results are ordered from fully-lazy to eager so that the first is the laziest, 

the second evaluates only the head, the third constructs the entire list but does 

not evaluate its elements, and the last evaluates everything. The required degree of 

evaluation of testlist is determined by the function that eventually uses its value. 

For example, consider the following functions: 

islist X 
I I return TRUE if x is a list 

hd X 



www.manaraa.com

31 

I I return the head of the list x 

l e n g t h  0 = 0  
length X = 1 + length (tl x) 
I I return the length of the list x 

sumlist 0 = 0 
sumlist X = (hd x) + sumlist (tl x) 
I I return the summation of the elements of list x 

During the evaluation, the four functions require a different amount of informa­

tion from the input list x While islist needs only to find out whether x is a list, 

sumlist needs to know the value of every element of x If we apply testlist to the 

four functions, the previous four forms of testlist just provide a proper amount of 

information. 

Our annotation scheme for list operations is to specify the control informa­

tion when the list is constructed. This information contains two major components: 

whether the head should be eagerly evaluated, and whether the tail should be eagerly 

constructed. This is denoted by using in the head and tail fields respectively. 

We can now control the list evaluation to the desired extent by using the proper 

combination of the annotations. Using the previous testlist as an example, its four 

results can be generated as follows: 

• map f 1 = f (hd 1) : map f (tl 1) 

• map f 1 = ®(f (hd 1)) : map f (tl 1) 

• map f 1 = (f (hd 1)) : (5(map f (tl 1)) 

• map f 1 = @(f (hd 1)) : 3(map f (tl 1)) 
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The proposed annotation scheme provides only a mechanism to identify specific 

expressions to be eagerly evaluated; it is the programmer's task to decide how to 

use it to achieve the desired effect. There are two important concerns that must be 

considered, namely the correctness of the final result, and the resources required for 

evaluation. According to the Church-Rosser Theorem, an expression evaluated in 

different orders returns the same normal form provided the evaluations terminates. 

Thus, changing an expression from lazy to eager evaluation will still yield the correct if 

the computation terminates. However, it should be noted that it is possible that under 

eager evaluation, a computation that would not otherwise be needed will terminate 

in error or will not terminate. The annotation is known to be safe if it does not 

introduce non-termination. 

The second issue concerns the computational resources needed to evaluate an 

expression. Eager evaluation may waste computation resources by introducing com­

putations whose results are not needed. The annotation is known as conservative if 

it does not introduce any unwanted computation; otherwise, the annotation is known 

as speculative.  

Depending on the correctness and resources used, the effect of annotating a 

computation can be classified as being unsafe, speculatively safe and conservatively 

safe. The most desirable annotation is conservatively safe because it initiates the 

required evaluation earlier and therefore may decrease the total computation time. 

A good application of this is to annotate strict arguments as eager since their values 

are eventually required. For example, fx = g x -\- h x can be annotated as 
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f  X  =  @  { g  x )  +  @  { h  x ) .  

In some cases, it may be desirable to use extra resources in exchange for in­

creased computation speed. To do this, the program is annotated as speculatively 

safe. Consider the following example 

f  X y  = i f  @ (x > y) then @ (* x  x)  else @ {* y  y)  

With no annotation, the execution first evaluates x > y and then, depending the 

result of x > y, initiates the evaluation either * x x oi: * y y. The annotated version 

forces X > y, * x x and * y y to be evaluated simultaneously, and will return the 

result once the evaluation of x > y is completed, assuming that the evaluations of > 

and * take same time. The annotated version is clearly faster; however, it introduces 

some unnecessary calculation since both branches of the if are evaluated but only one 

result is required. Thus, there is a trade-off between the speedup and computational 

resources consumed. 

The unsafe annotation means the eager evaluation may introduce non-termination 

in an otherwise well-behaved expression. Furthermore, it completely changes the 

behavior of the program. Although it is possible to obtain maximum speedup, in­

troducing an unsafe annotation in program is dangerous unless the programmer has 

complete control over the range of input data. Consider the following two examples: 

/  X = i f  @ {x > 0 )  then @ ( l /x)  else @ {x * z)  

g  n  =  n  :  @  { g  ( n  +  I ) )  

Both annotated versions alter the original lazy semantics. In the first example, / 0 
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fails to return a value because of the division 1/0. The second example never termi­

nates under any input data because tries to construct an infinite list. 

There is no optimal way to annotate a program. It depends on the desired 

speedup, the available resources, and even the range of input data. Although some 

abstract interpretation techniques [2] can be applied in pre-processing (e.g., strictness 

analysis) to assist the annotation, it can only detect partial information because of 

the undecidability of programs. It is still up to the programmer to find the "best" 

annotation. 

Annotating Combinators 

Since additional control information is added to SASL programs, the run-time 

evaluator should be modified to incorporate this information. Our approach is to add 

a control tag to the regular combinators that can override the original lazy semantics 

and eagerly initiate some specified expressions. The modified evaluator becomes: 

while TRUE 

begin 

while (the node is not tip) 

begin 

make left branch the current node; 

end 

if (tip is not a redex) 

return current expression; EXIT; 

if (the strict arguments have not been initiated) 

evaluate the corresponding ribs; 

if (the evaluation of the strict arguments have not been completed) 

wait for completion; 

modify graph by corresponding rewrite rules or built-in functions ; 

if (tip is a combinator with control tag) 

initiate the evaluation of desired expressions accordingly 

end 
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The major modification over the original evaluator is the extra if step in the end. It 

may initiate one or more new processes and distribute the computation to different 

processors. Also, an extra if statement (the third one) is added to test the possibility 

of early initiation. 

The role of the control tag can be best explained by an example. Consider the 

combinator S, where S f g x — f x [g x). For demonstration purposes, we denote 

application by an explicit and present the expression in a fully parenthesized 

fashion. In this notation, S can be rewritten as S f g x = {{f.x).(g.x)). We first 

explain the operation of the original lazy semantics and then show how the tag can 

be added to force the desired eager evaluation. 

Note that the reduction of S  f  g x  introduces three new applications, namely the 

application of x to /, or (/.x), the application of r to g or (g.a:), and the application 

o f  ( g . x )  t o  ( f . x ) ,  o r  ( { f . x ) . { g . x ) ) .  U s i n g  l a z y  s e m a n t i c s ,  t h e  e v a l u a t i o n  o î  S  f  g  x  

proceeds as follows: 

1. initiate the evaluation of the third application { ( f . x ) . { g . x ) ) .  

2. since the value of function body ( f . x )  is unknown, suspend the current evalua­

t i o n  a n d  i n i t i a t e  t h e  e v a l u a t i o n  o f  ( f . x ) .  

3. ( f . x )  returns a result, say h \  resume the evaluation of the third application, 

now h.{g.x) .  

4. if is a non-strict function, continue the evaluation of h . ( g . x )  and return the 

final answer. 

5. if /i is a strict function (i.e., the value of ( g . x )  is required), suspend the evaluation 
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of h.(g.x)  and initiate the evaluation of ig.x)\  after {g.x)  returns its result, say 

y, resume the evaluation of the third application, now {h.y), and return the 

result. 

In summary, the evaluation can be divided into three steps: first, evaluate f . x  (and 

return A); second, if h is strict, evaluate g,x (and return y)\ third, evaluate h.y or 

h.(g.x) .  

Now let us discuss the opportunity for eager evaluation. The first step is eagerly 

evaluated by the original lazy semantics and there is no need to add a new tag. The 

third step can not be evaluated immediately since its initiation depends on the first 

step. Thus, the only possibility is the second step. If we know (or guess) that the 

result of (f.x) is strict, we can initiate the evaluation of [g.x) earlier by marking it as 

eager and thereby evaluate the first and second steps in parallel. In other words, the 

operating semantics of S is now changed from {(f.x),{g.x)) to {{f.x)M{g.x)) We will 

use a tag to represent this change. It will be denoted as a subscript to the original 

combinator. For convenience, we will also employ angle brackets "()" to denotes the 

eager evaluation of the expression in the bracket. For example, the "eager" 5 can 

n o w  b e  w r i t t e n  a s  5 ^ ,  a n d  i t s  r e w r i t e  r u l e s  a . s  f  g  x  =  { f  x )  { g  x ) .  

We can apply the same idea to other combinators by attaching proper con­

trol tags. The detailed definitions these combinators are shown in Figure 3.1. Like 

the tag in 5, they instruct how to evaluate the newly created applications after 

the corresponding combinator reduction. Because some combinators are more com­

plicated and introduce more applications in their rewrite rules, there may be mul­

tiple expressions that can be eagerly evaluated. For example, consider 51, where 
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Regular Combinators 

B  f  g  X -  f  { g  x )  
f  g  X  =  f  { g  x )  

a-.'.; 
51 t / g z = t (/ z) (g z) a t ^ a: = 6 (/ (p z)) 
Si ' '  f  g  X =  k  { f  x )  { g  x )  B l ^  k f  g  x  =  k { f  { g  x ) )  

Sl^  f  g X = k ( /  x)  {g x)  ^  ^  ^  ® ^  .  

5 1 "  / . , = M /  4  ( ,  z )  

List-Oriented Combinators 

S p  f  g  X =  i f  x )  :  ( g  x )  B p  f  g  x  =  f  :  { g  x )  

Sp^ f  g  x  = {f  x)  ; {g x)  Bp^ f  g  x  = f :  {g x)  
Sp^ f  g  X = {f  x)  :  {g x)  Cp f  g  x  = {f  x)  : g  

Sp^^ f  g  X = {f  x)  : {g x)  Cp^ f  g x  = {f  x)  : g  

Figure 3.1: Definitions of the Extended Combinators 
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S I  k  f  g  X  =  k  { f  x )  { g  x ) .  Since there are two applications that can be eagerly eval­

uated, the tag must contain two bits of information, and the corresponding rewrite 

rule is expanded to four rules: 

S I  k  f  g  X  -  k  i f  x )  ( g  x )  

Sl^  k  f  g X =  k  [ f  x )  { g  x )  

Sl^ k f g X = k (/ x} (g x) 

Sl^^ k f g X = k (/ x) {g x) 

The subscripts I  and r  represent that the "left" and "right" expressions can be eagerly 

evaluated respectively. 

The list-oriented combinators can be extended in similar way. In SASL, a list 

structure contains two major fields: the head, which is the first element of the list, 

and the tail, which is also a list (more precisely, a pointer to a list) containing the 

rest of the list. The list-oriented combinators construct a list by specifying the list's 

head and tail respectively. The combinator in conjunction with the control tags 

determines how to construct the corresponding fields. For example, consider 5p, 

where Sp f g x = (f x) : (g x). By the lazy semantics, the reduction of Sp only 

constructs the list and does not evaluate its head or tail. As we have seen in previous 

examples, it is sometimes advantageous to evaluate the list to certain degree during 

construction if it is known that the the values will be needed. The new control tags 

allow us to override the default lazy semantics and to force the specified field to be 
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eagerly constructed. The rewrite rules for S p  can now be expanded into four rules: 

S p  f  g  x  =  { f  x )  :  ( g  x )  

Sp^ f  g  X = {f  x)  : {g x)  

Sp^ f  g  x  = {f  x)  : {g x)  

Sp^^ f  g  X = i f  x)  : {g x)  

Here, h  denotes the evaluation of the head, and t  the tail. The extended rewrite rules 

of other list-oriented combinators are shown in Figure 3.1. 

Extended Compiling Algorithm 

The previous two sections introduce mechanisms to add extra control information 

into SASL programs and combinators respectively. In this section, we will discuss how 

the compiling algorithm was extended to propagate the new control information from 

SASL programs to combinatory code. 

Recall that Turner's original compiling algorithm consists of the abstraction 

phase and optimization phase, each of which contains a set of transforming rules 

as shown in the Figure 2.4. To propagate the new control information, we add a 

set of optimization rules for the tagged combinators. The goals of our extension are 

twofold: first, to keep Turner's original optimization rules (to minimize the number of 

reductions); second, to preserve all the control information from SASL programs. The 

complete extended abstraction algorithm is shown in Figure 3.2. Note that whereas 

there is only one extra rule in the abstraction phase, there is substantial modification 

in the optimization phase. 
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Abstraction Rules 

A a: [@ /] = @ (A .-c [/]) 
A X [hd :  t l]  = O (A .-c [ h d ] )  (A x  [i/])] 
A x [f g] = O [5 (A X [/]) (A x [5])] 

A  X  [ z {  =  I  
A a; [y] = K  y  if .r does not occur in y  

Optimization Rules for Regular Combinators 

O [5 { K  f )  ( K  5)] =  K  f  9 
O  [ 5  [ K  f )  @  [ K  ̂ ) ]  =  K  f % g  
0 [ S { K  f ) I ) ]  =  f  
0 [ S { K  f ) @ I ) \  =  f  
O  [ 5  [ K  f )  i B g h ) ]  =  m  f g h  
0 [ S ( K  g  h ) ]  =  m ' '  f g h  

0 [ S  { K  f ) @ { B  g  h ) ]  =  f  g  h  

0[S{K gh)] = Bl^^ f  gh 
0 [ S { K  f ) g ]  =  B f  g  
0[S{K f)@g] = B' '  fg  

O  [ S  ( B  f  g ) ( K  h ) ]  =  a  f  g h  
0  [ 5  ( £ ' •  /  g )  { K  h ) ]  =  C V  f g h  
0  [ S  ( B ' '  f  g ) @  { K  h ) ]  =  C I ' '  f  g @  h  
0[S (B f  g)@ (K h)] = C'l  f  g@ h 
0 [ S / ( A r g ) ]  =  C / 9  
0  [ 5  /  @  { K  g ) ]  =  C  f  @  g  
0 [ S  ( B  f  g )  h ) ]  =  S I  f  g  h  

0 [ S ( B  f g ) < §  / i . ) ]  =  8 1 ' '  f  g h  

0 [ S ( B '  f g ) @ h ) ]  =  S l ^ ' '  f g h  
O [g / @ p] = / 9 

Optimization Rules for List-Oriented Combinators 

O  [ S p  { K  f )  ( K  g ) ]  =  K  ( f  :  g )  

0 [ S p { K  f ) @ ( K  g ) ]  =  K { f : @ g )  
O [^ @ (A' /) @ (A' 5)1 = K (@ / : @ 5) 
O [Sp (K f)  g]== Bp f  g 

O [4, (A' @ g) = ^ 
O [5p @ (A' f ) g ]  =  B p @ f g  

O  [ 5 p  @  ( A '  f ) @ g ]  =  B p ^  @  f g  

O @ / (A' p)] = C),/' / g 
O [Sp f  @ (K g)j = Cp f  @ g 

0 [ S p @  f @  ( K  5 ) ]  =  C p f "  f @ g  

O [Sp @ f  g] = Sp^ f  g 

O [Sp f  @ g] = Sp^ f  g  

O [Sp @ f  @ g] = Sp^^ f  g 

Figure 3.2: Extended Abstraction Algorithm 
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The extra rule in the abstraction phase is 

A .13 [@ /] = @ (A X [/]) 

The only purpose of this rule is to preserve the so that it can be used later in 

optimization phase. The optimization rules are discussed in the following subsections, 

including rules for regular combinators, rules for list-oriented combinators, and the 

correctness of these optimization rules. The last subsection gives several illustrated 

examples. 

Optimization rules for regular combinators 

There are fourteen additional optimization rules for tagged regular combinators. 

Their design is based on three principles: 

• translate the eagerness notation to a proper tagged combinator. 

• translate one tagged combinator to another tagged combinator. 

• propagate 

Rules following the first principle "consume" the notation by converting a 

in the SASL expression into a control tag in the combinator. The most straight­

forward example is the rule 

O [5 f @ g ]  =  5'' /  g  

The only purpose of this rule is to change the into the control tag of S .  The 

expressions in the left side and right side are essentially the same except that they 
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are written in a different notation. The other rules following this principle are more 

complicated since they not only convert the but also perform combinator opti­

mization at the same time. For example, the rule to generate is 

O [5 { K  f ) @ g \  =  B ' '  f  g  

It simplifies the expression S  { K  f )  g )  as well as converts the into proper a tag. 

Rules following the second principle are concerned with the transfer of informa­

tion between combinators and do not involve any notation. In the original SASL 

system, an optimization rule always converts a complicated expression into a simpler 

one, therefore eliminating combinators. For example, S and B are eliminated in the 

optimization rule of 51 

O  [ S  [ B  f  g ) h ]  =  S l  f  g  h  

However, combinators in the extended system may carry extra information in its 

tag, and simply discarding the combinator will lose the control information. Rules 

following the second principle preserve this information by transferring it from the 

tag of the old combinator to the tag of newly created combinators. For example, the 

rule to generate 51^ is 

0 [ S { B ' '  f g )  h ] ^ S l ^  f g h  

Note that in this rule the r  tag in B  becomes I  tag in 51. Although the B  has been 

eliminated, the control information is preserved. 

The third principle is the complement of the first. It is applied when a left 

expression contains a but no proper tagged combinator can match the expres­

sion's pattern. In other words, there is no way to consume the in the current 
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abstraction step. Instead of discarding it, this method provides a way to preserve 

the and pass it on to future abstraction steps. For example, one rule for the K 

optimization is 

0 [ S { K  f ) @ { K  g ) ]  =  K  f @ g  

Note that notation appears in the both sides. This principle comes from the fact 

that the compiling algorithm can only abstract one variable at a time, and there is no 

way to convert the annotated expression if it does not contain the variable currently 

being abstracted. For example, consider the abstraction of f x y = g &i .r). 

In the first step, y  will be abstracted form the expression. In this step, cannot 

b e  p r o p e r l y  u s e d  s i n c e  y  d o e s  n o t  o c c u r  i n  { h  x )  a n d  t h e  w h o l e  e x p r e s s i o n  @  { h  x )  i s  

treated as a constant. If we discard @ in this step, the result after the first abstraction 

is C g {h x) and the control information can never be recovered. If we employ the 

third principle, the result will he C g @ (h x) and the control information can be 

used in the next abstraction step (which abstracts x and will give {C g) h, the 

desired answer). 

Note that some complicated optimization rules may involve more than one prin­

ciple. For example, the optimization rule for 51^^ employs the first and the second 

principles: 

And one optimization rule for CI'' uses the second an the third principles: 

O  [ 5  ( B '  f  g ) @  ( K  / , ) ]  =  C r  f  g @  h  
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Optimization rules for list-oriented combinators 

The optimization rules for list-oriented combinators are based on concepts sim­

ilar to those of regular combinators. The major difference is that the list-oriented 

combinators may need two separate tags to control the the evaluation of the head 

and tail respectively. Because list-oriented combinators do not have "long-reach" 

combinators, like 51 and Bi, their optimization rules employ only the first and the 

third principles in the previous section. However, because the list-oriented combina­

tors have two control fields, these optimization rules may involve two notations 

at the same time. For example, both of the following rules involve two 

O [5^ @ @ (A: g)] = c/ / @ g 

@ / g 

The detailed rules are shown in Figure 3.2. 

The correctness of the optimization rules 

In order to show that an optimization rule is correct, we need to prove that the 

expressions on the left-hand side and right-hand side of the rule are equivalent. In 

the extended system, equivalence means that the two expressions will converge (or be 

reduced) to a common expression, including the control information (lazy or eager) 

on each function application. This is more strict than the conventional definition 

s i n c e  i t  i n v o l v e s  s o m e  c o n t r o l  i n f o r m a t i o n .  F o r  e x a m p l e ,  u n d e r  t h i s  d e f i n i t i o n  f  { g  x )  

and / {g x) are not considered to be equivalent since the control information on the 

application g x are not identical. 
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The equivalence of the expressions can be shown in the extensional  sense; i.e., / 

and g are considered to be equivalent if and only if Va:, / x and g x are equivalent. 

We use the rule O [5 f g) @ h] = 51^^ f g h to demonstrate the proof since 

this is a relatively complicated rule and employs both first and second principles. 

The other rules can be proved in similar manner. Note that in our extended system, 

every application must be either lazy (by default, denoted by (• • •) or blank) or eager 

(denoted by (•••) or by @ (•• •)). 

Claim: The two expression S (B"'  f  g)  @ h and f  9  h  are equivalent (in exten­

sional sense). 

Proof:  

apply X to S  { B ^  f  g )  @  h :  

S  (B' '  f  g)  @ h X = (B^ f  g x)  @ (h x)  by the definition of S  
=  f  { g  x ) @  ( h  x )  by the definition of 
=  f  { g  x ) { h  ) by our convention of () 

=  61^^ f  g  h  X  by the definition of 

• 

Illustrated examples 

The effect of the extended compiling algorithm can be best demonstrated by some 

simple examples. Three examples are given in this subsection: one for a one-variable 

function, one for a two-variable function and the other for list operation. 

The first example involves only one variable. Let test l  x  = f (g x)  (h x) ,  where 

/, g and h are functions defined elsewhere. If the two arguments of / are eagerly 
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evaluated, then the function testl can be annotated as f @ {g x) @ [h x). Some key 

steps of the abstraction of testl are listed below. 

A X  [iesU] = A  X  [ f  @  { g  x )  @  ( h  .t)] 

= O [5 (A X  [ f  @  { g  .t)]) (A X  [ @  ( h  z])] 

= O [S (A X [f @ (g .r)]) @ (A x [h z))] 

= O [5 (O [5 { K  f )  @  g \ ) @ 0  [5 { K  h )  I ] )  

=  0 [ S { B '  f g ) @ h ] )  
= 

The effect of the tagged combinatory code can be shown by examining the evaluation 

of an application, say testl 2. The first few steps are given below. Note that, as we 

desired, both evaluations of A 2 and g 2 are initiated earlier. 

testl 2 = S''{B^fg)h2 

=  ( B r / 9 ) 2 ( A 2 )  

=  f  { g  2 ) { h  2) 

The second example involves two variables. Let test2 x y = f {g y) (h x), 

where /, g and h are defined elsewhere and the two arguments of / are to be eagerly 

evaluated. The annotated function is test2 x y = f @ {g y) @ (h x). Since there 

are two variables in the function definition, abstraction needs to be performed twice 

(first on y, then on x). Some key steps of the abstraction are: 

A y [test2 ,t]  =  A  y  [ f  @  { g  y )  @  { h  z)] 

= O [S (A y  [/ @ [ g  i/)]) (A y  [@ ( h  .r)])] 

=  O  [ 5  ( A  X  [ f  @  ( g  z ) ] )  @  { A  y  [ h  z ] ) ]  
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= O [5 (O [5 { K  f )  @  ^ ] )  @  [ K  { h  % ) ) ]  

=  0 [ S  { B ' f  g ) @ h ]  

= CI''f g @ (K {h x)) 

A ,c [iesi2] = A x  [Cl^ f  g  @  { K  z))] 

= O [5 (A .T [Cl^ / g ] )  (A .r [@ (/l [ h  .r))] 

= O [5 (A .T [Cl^ / g]) @ (A .T [A' {h .r)])] 

= A] 

= B ' { a ' ' f g ) h  

Note that only one has been consumed in the abstraction on .t, and the other 

is propagated to the abstraction on y. The effect of the tagged combinatory code 

is shown below, where the evaluation of say test2 3 4 is given. Again, as we desired, 

both the evaluations of /i 3 and g 4 are initiated earlier. 

test2 3 4 = f g) h 3 4 

= Cl'' / g(h 3) 4 

= f {g 4)(/i 3) 

The abstraction processes for list operations is similar to that of scalar opera­

tion except the function application is replaced by list construction. However, the 

annotation on list operations may drastically change its lazy property. The third 

example shows how this effect can be achieved. Consider g n = n : {g (inc n)), which 

generates an infinite list starting from n (inc is a function that increases its argu­

ment by 1). To eagerly construct the entire list, the function g can be annotated as 
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g n = n : @ {g [inc n)). Of course, this example is only for demonstration purposes 

since the evaluation will never terminate. The key steps of the abstraction are: 

A X [g\ = A n [n : [inc n.))] 
= O [5p (A n [n]) (A n [@(5 (inc n))])] 
= O [5p (/) @ (A n [g (inc n.)])] 

= O [ S p  I  @  ( B  g  inc)j 

= Sp^ I (B g inc) 

The execution of pi is: 

g I = Sp^ I (B g inc) 1 
=  ( f l ) :  { ( B  g  i n c )  1 )  
= (/l):(ff2) 

=  ( I  1 )  :  ( I  2 )  :  { ( B  g  i n c )  2 )  
=  ( 7  1 ) :  ( 7  2 ) :  ^  
= (I 1) {I 2) : [I 3) ; {g 4) 
=  ( / l ) : ( / 2 ) : ( / 3 ) : ( / 4 ) : . . .  

As we expected, the evaluation of g 1 continues building the list and will never 

terminate since the list is infinite. Note that the list's elements have not been evalu­

ated because the head has not been annotated as eager. 

Summary 

In this chapter, we have developed a scheme to add control information that can 

override the original lazy semantics of SASL system. The scheme first annotates SASL 

programs to specify which expression should be eagerly evaluated, and then transfers 

the annotation to combinator's control tags. The propagation is performed by the 

extended compiling algorithm whose optimization phase has been expanded to handle 

the new control information. Because sequencing is largely irrelevant in functional 

languages, this scheme fits well into the original framework of SASL system and can 
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be treated as a multiprocessor extension rather than a new language. 

In the next two chapters, we will examine the effectiveness of this scheme by 

simulating program execution on an idealized multiprocessor system. 
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CHAPTER 4. SIMULATION OF THE MULTIPROCESSOR 

REDUCTION SYSTEM 

The effectiveness of the proposed annotation scheme is evaluated by simulating 

program execution on a virtual shared-memory multiprocessor system. The purpose 

of using a virtual system is to shield the influences from the physical system. Since 

the virtual system represents an idealized multiprocessor system, the execution speed 

will not be degraded by communication delays or resource contention, and hence 

the performance can rely only on the inherent parallelism and the efficiency of the 

annotation scheme. The design of the simulator is described in this chapter, and 

the benchmark programs and their simulation results will be discussed in the next 

chapter. 

There are two major modules in the SASL implementation, namely the compiling 

module and the execution module. The major task of the compiling module is to 

compile the annotated SASL programs into tagged combinatory code. This module 

includes two sub-modules which perform parsing and abstraction respectively. The 

task of the execution module is to simulate the execution of the combinatory code on 

an idealized system. It contains a reducer module that implements the template for a 

single instance of a processor, and a process management module that coordinates the 

operation between processors. Detailed descriptions of the two modules is discussed 
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in the following sections. 

The Design of the Compiling Module 

The compiling module is based on the original SASL interpreter. Both the pars­

ing sub-module and the abstraction sub-module are extended to incorporate the an­

notation scheme. Although the annotation scheme drastically changes the operational 

semantics of the standard SASL language, there are only minor modifications in the 

syntactic level and therefore the major part of the two sub-modules is kept intact. 

In the parsing sub-module, two syntax rules are modified to reflect the inclusion 

of the annotation. To include the annotated function application, the rule for regular 

expressions is changed from 

<simple) ::= <naine> I <constant> 1 <zfexpr> I (<expr>) 

[57, p. 23] into 

<simple> ::= <neune> I <constant> I <zfexpr> I (<Gxpr>) I Q (<expr>) 

To include eager list construction, the rule for the structure is changed from 

<struct> ::= <formal> I <formal> : <struct> 

[57, p. 23] into 

<struct> ::= <formal> I <fomal> : <struct> I 0 (<formal>) : <struct> I 

<formal> : 0 (<struct>) I fl (<formal>) : 3 (<struct>) 

In the abstraction sub-module, the extensions are manifested as extra optimiza­

tion rules. In the original implementation, the optimization sub-module is imple­

mented as case analysis and each rule is represented by a case with a specific pattern. 
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Thus, the major modification in this sub-module is to expand the patterns in the case 

analysis part, specially: 

• add extra cases to match expressions with the symbol. 

• add an extra level case analysis in each case clause to handle the pattern match­

ing of the control tags. 

The output of the extended compiling module is similar to that of the original 

SASL compiler except that each node now has an extra field containing the combi-

nator's control tag. 

The Design of the Execution Module 

The execution module simulates the operation of an idealized shared-memory 

multiprocessor system. The purpose of the simulation is to study the performance of 

the proposed parallelism-control mechanism. The two major parts of the execution 

module are the reducer and process manager. Although the two parts are discussed 

separately, their operations are tightly-coupled. The following subsections describe 

the operation of the multiprocessor system, process management and the reducer, 

and give the pseudo code of the execution module. 

The idealized combinator-based multiprocessor system 

The idealized multiprocessor system can be thought as a shared-memory system 

containing a large number of processors and a global memory with infinite bus and 

memory bandwidth. Under this assumption, there is no communication delay or 
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resource contention and hence all physical constraints are lifted. The processor is 

similar to a traditional processor except that it needs to perform combinator reduction 

and to do some basic process manipulation. Each processor contains three basic units: 

• ALU unit: perform basic arithmetic and logic operations (the 6-rules). 

e reduction unit: perform the combinator reduction and modify the corresponding 

graph (/^-reduction). 

• process management unit: perform the process management including initiating 

the new processes and updating the status of the residing process. 

The global memory is shared by all processors and can be accessed simultane­

ously. Each memory cell corresponds to a node in the combinator graph and includes 

the following fields: 

• type: indicate the type of this node; it can be atom, list, or application. 

• left: depending on the type of the node, it contains: 

- the pointer to the applicator, if the type is application. 

- the pointer to the head, if the type is list. 

- a constant symbol, including combinators, built-in functions, numbers, 

etc., if the type is atom. 

• right: depending on the type of the node, it contains: 

- the pointer to the applicant, if the type is application. 

- the pointer to the tail, if the type is list. 
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-  N I L ,  if the type is atom. 

• status: node's current execution status, which can be either reducible, reducing 

or reduced. 

• tag: contains the control tag, if the node is a combinator; otherwise undefined. 

The left and right fields represent the two branches of the binary tree and are self-

explanatory. The status field is included to assist the synchronization of the multi­

processor operation. It indicates whether the graph pointed by this node is reducible, 

is under evaluation, or has been evaluated. The process checks, and modifies, if re­

quired, the status field during the initiation and termination. To avoid racing or 

deadlock, operations on this field are atomic. The tag and type fields are also self-

explanatory. 

Process management 

Because there are more than one processor working on the same task, a process 

manager is needed to coordinate and synchronize the operation. A process can be 

defined as the procedure that reduces a combinator graph to the normal form. All 

processes maintain, in addition to general statistics-collecting and housekeeping fields, 

three pieces of information: 

• root: the current root of the graph to be reduced. 

• state: the current execution status of the process, which can be either running, 

waiting or completed. 
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• argument list: a list containing the roots of the strict arguments which are 

currently being evaluated. 

During every clock cycle, one of the following actions may take place in a process: 

• terminating: if the graph is in normal form. 

• reducing: if the graph is reducible and all the required strict arguments have 

been evaluated. 

• waiting; if the strict arguments are being evaluated by other process. 

• suspending; if the evaluation of the strict argument(s) has not been initiated; 

the process sets up a new process for the first strict arguments. 

The "reduction" and "suspending" actions may create new processes. If the reduction 

is performed on a tagged combinator, the control tag will create new processes for 

the designated expressions. These processes are normally independent of their parent 

process and can be executed concurrently. Since these processes can be distributed 

to separate processors, they contribute to the actual speed-up of the multiprocessor 

system. In the "suspending" action case, a new process is created to evaluate the strict 

argument. Note that creating a new process for this purpose is not necessary since the 

operation of old process is always suspended and hence control can be transferred to 

its child process, as in a traditional procedure call. Although it is possible to let some 

strict operators such as + and * create a new child process for their strict arguments, 

we choose not to do so for the uniformity of the design and treat them as lazy. If 

strictness is desired, these operators can be easily overridden by an extra function; 

for example, eager + can be written as 
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eager.plus x y = Q x + 9 y  

The operation of the multiprocessor system is coordinated by using a combination 

of the status field in the node and the process state, as shown in Figure 4.1. When a 

process is created, its state is set to running since there is always a processor available 

in the idealized system. Depending on the status field of the root, one of the following 

actions may take place: 

• if the status is reduced, the process changes its state to terminate and signals its 

completion by broadcasting its root so that processes waiting for that subgraph 

can then use the new value. 

• if the status is reducing, which means another process initiated the evaluation 

earlier, the process' state changes to waiting and the root is put root into process' 

argument list. 

• if the status is reducible, the process changes it to reducing to prevent duplicated 

computation and starts the evaluation. During the evaluation, there are three 

possibilities: 

- if the graph is in normal form, the process changes the status to reduced 

and the state to terminated, and signals its termination by broadcasting 

its root. 

- if all strict arguments are available, the process performs a reduction and 

stays in the running state. 

- if the evaluation of the strict arguments has not been initiated, the proc­

ess sets up new process to evaluate the corresponding subgraph, puts the 
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2,3 

SI 0 
4,5 

0 
Transitions: 

1: initialization 
2: combinator reduction 
3: all strict arguments reduced 
4: strict argument reducible 
5: strict argument reducing 
6; empty argument list 
7: graph in normal form 

States: 

Si: Running 
S2; Terminated 
S3: Waiting 

Figure 4.1: State Diagram for the Process Control 
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subgraph's root into the argument list and changes its state to waiting. 

- if any of the strict arguments is under evaluation since the corresponding 

node's status is reducing, the process' state changes to waiting and puts 

the roots into its argument list. 

After the process enters the waiting state, it continues monitoring the broadcasting 

roots and eliminates the matched root from its argument list. Once the elements 

of the argument list has decreased to zero (i.e., all the strict arguments have been 

reduced), the process can change its state to running and continue the evaluation. 

The reducer 

The reducer simulates the operation of the ALU and reduction unit of the proc­

essor. Its basic algorithm is similar to the reducing module of the standard SASL; 

however, two major extensions are made for the multiprocessor environment: 

• before initiating the evaluation of an argument, it will test the node's status 

to check whether the evaluation has already started. If so, it will wait for 

completion rather than evaluating the argument again. 

• after completing the reduction of a combinator, it will check the control tag 

and may initiate eager evaluation of some new expressions composed during 

the reduction. 

Outline of the execution module 

The execution module is responsible for simulating the execution of tagged com­

binatory code. Its pseudo code is shown below: 
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create a process for the expression; 

while (there are RUNNING process){ 

increase clock tick by 1; 

for (each process with active status){ 

unwinding the spine; 

if (the tip's status is REDUCEDH 

change the process' state to TERMINATED; 

continue :} 

if (the tip's status is REDUCING){ 

change the process' state to WAITING; 

put the current root into argument list; 

continue ;} 

if (the graph is in normal form){ 

change the process root's status to REDUCED; 

change the process' state to TERMINATED; 

}else{ 

change the process root's status to REDUCING; 

switch(tip){ 

case COMBINATOR: 

modify the graph accordingly; 

if (control tag exists) 

create a process for the corresponding expression; 

break; 

case OPERATOR: 

if (all the strict arguments has been evaluated){ 

perform the operation; 

break;} 

for (every strict arguments under evaluation) 

put its root into argument list 

if (there is an unevaluated strict argument){ 

create a new process for the argument; 

change the new process' status to REDUCING;} 

change the process' state to WAITING 

} /* end of switch */ 

} /* end of else */ 

} /* end for loop */ 

for (each process with state TERMINATED){ 

broadcasting its root; 

for (each process) 
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if (the root match one in argument list) 

delete the matched node from list 

delete the terminated process;} 

for (each process){ 

if (the list is empty) 

change the state to RUNNING;} 

} /* end while loop */ 

dump the relevant statistics; 

The top-level while loop simulates the operation performed in one clock cycle. 

The two top-level for loops inside the while perform the synchronization of the 

processes. While the first loop does the initial checking, the second loop performs 

the final updating. The actual reduction is simulated by the inner switch construct, 

which is further divided into the reduction of combinators and regular operators. 

The actual program is coded in the C language and takes about 2500 lines. Its 

design emphasizes in the clarity and correctness rather than efficiency and compact­

ness. Rough estimation shows that it takes about twenty hours of CPU time on 

an AT&T 3B1.5 to simulate an eight processor system with a clock rate one million 

reductions per second for one second. 

The next chapter will show the actual simulation results of some selected pro­

grams. 
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CHAPTER 5. THE EFFECTIVENESS OF THE ANNOTATION 

SCHEME 

One of the major design criteria for multiprocessor systems is maximizing the 

potential speedup. In an idealized system, this criterion becomes more significant 

since the utilization of physical resources are not a major concern. Thus, in the virtual 

system level, the effectiveness of the proposed annotation scheme can be measured by 

the parallelism extracted from the application programs. In this chapter, we analyze 

a set of programs using the simulator described in the previous chapter, and study 

their run-time behavior and potential speedup. 

The extractable parallelism depends on a wide variety of factors. From the system 

point of view, making effective use of parallelism relies on hardware aspects, such as 

bus and memory organization, as well as programming language features, such as the 

parallelism control constructs. From the application point of view, the parallelism 

depends on the nature of the problem domain, the algorithm used, the programming 

style, and the size and pattern of input data. Although it is desirable to control 

every aspect of the program, achieving this goal is almost impossible. First, there 

are too many factors that may influence the program execution in a multiprocessor 

environment. Sometimes a minor change in one sensitive factor may greatly affect the 

outcome. Moreover, some factors such as the programming style and the pattern of 
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the input data are only vaguely defined and have no exact metrics to measure them. 

Second, many factors are not independent but are highly interrelated and cannot 

be easily isolated and analyzed. In other words, we can only run the program and 

observe the collective behavior of many interwoven factors. 

Our approach to this problem is to employ two different sets of benchmark pro­

grams. Programs in the first set represent some typical scenarios encountered in the 

multiprogramming environment. Because of their simplicity, we can study their run­

time behavior in more detail and examine the characteristics of the proposed scheme. 

Programs in the second set are more "realistic" and represent some real-world applica­

tions. Because these programs are generally larger and have many factors influencing 

their execution, explaining their detailed behavior is extremely difficult, if not im­

possible. Thus, in this set, we only observe the overall effects rather than trying to 

explain their run-time behavior in detail. The simulation results of the two sets of 

programs will be examined and discussed in the following sections. 

Effect of Annotation on Some Representative Benchmarks 

In this section, we investigate the characteristics of the proposed annotation 

scheme by carefully examining some selective benchmark programs. Because these 

programs are simple and their run-time behavior is well understood, the effect of the 

annotation mechanism can be studied in more detail. The benchmark programs in­

clude fib, which calculates Fibonacci numbers, map, which performs a homogeneous 

operation on all the elements of a list, and isort, which sorts a list by the insertion-

sort method. These programs were chosen because they contain some characteristics 
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that are frequently encountered in the non-numeric programming environment, and 

each of them represents a particular kind of strategy commonly used to extract par­

allelism. 

Benchmark 1: Fibonacci numbers 

Recall that the definition of the Fibonacci sequence is: 

- ,  - f l  i f r r  =  O o r u  =  l  

" \ /(" ~ 1) +/(™ — 2) otherwise 

It can be easily coded in SASL: 

fib n = n<3 -> 1; fib (n-1) + fib (n-2) 

This program is a widely used benchmark because it has several interesting properties. 

First, this program is highly recursive and generates numerous function calls, so it can 

be used to test the efficiency of function call implementation. Second, in a parallel 

environment, this program can naturally apply the divide-and-conquer strategy since 

the computation of the "else" branch can be divided into two parallel subtasks, namely 

fib (n-1) and fib (n-2). Although fib (n-1) and fib (n-2) are not identical, 

they have similar granularity. In other words, when fib n is invoked, the load can be 

distributed into two evenly divided subtasks. Thus, this program serves as an ideal 

divide-and-conquer example. 

Simulated results In our system, the divide-and-conquer scheme can be easily 

achieved by annotating the two branches of + as eager: 

fib n = n<3 -> 1; ®(fib (n-1)) + @(fib (n-2)) 
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The corresponding compiled combinator code of fib is 

•  f i b  =  S  (Cl cond (< 3)1) (5^ (a' + fib (C - 1)) [ B  f i b  { C  -  2))) 

The tags of S and Bl are due to the annotation in the right branch and left branch 

of + respectively. 

The extractable parallelism is represented by the profile of active processors, 

which is a plot with the vertical axis as the number of active processors and the 

horizontal axis as the virtual system clock. The execution of fib 10 is shown in 

Figure 5.1. The trend in the plot is similar to what we expect from a divide-and-

conquer program. It can be roughly divided into the spreading phase and the resolving 

phase. In the spreading phase, initiation of the new processes is the dominant activity. 

Since the parent process recursively invokes child processes and distributes its work 

into smaller pieces, the number of active processors continuously increases. When 

the execution reaches the leaves in the divide-and-conquer computation tree, the 

child processes start to return the results and the execution gradually enters the 

resolution phase. In the resolution phase, the termination of the processes becomes 

the dominant activity. Since a large number of child processes return their results 

and terminate, the number of active processors declines rapidly. 

To explain the profile in more detail, we need to look at the trace of the exe­

cution. Some key steps in the execution of the initial recursion cycle of fib 10 are 

highlighted in the following paragraph. The underlined symbols in the trace repre­

sent the operators under reduction and the number to the right denotes the system 

clock. Note that the node containing a constant symbol needs one tick to be marked 

as reduced, and some nodes may need to be visited twice because of the unevaluated 
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fib 10 where fib n = n<3->l; (3(fib (n-1)) + @(fib (n-2)) 

total time elapsed: 110 ticks 
total work done; 1304 reductions 
speedup: 11.84 

Figure 5.1: Profile with fib n = n<3->l: @(fib (n-1)) + #(fib (n-2)) 
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strict arguments; i.e., the first visit initiates the evaluation of some strict arguments, 

and the second visit, which occurs when the value of the argument has been returned, 

performs the actual reduction. The trace is: 

f i b  10 

= 5 (CI cond (< 3) 1) (5^ (Bl' 4- f ib (C - 1)) { B  f i b  { C  -  2))) 10 1 

= a cond (< 3) 1 10 (5^ (Bl^ + fib {C - 1)) ( B  f i b  ( C  -  2)) 10) 2 

= cmd (< 3 10) 1 (5^ {Bl^ + fib {C - 1)) ( B  f i b  ( C  -  2)) 10) 3 

= cond{<_nâ) I [S^ (Bl^ + fib{C-I)) {B fib{C-2))10) 4 

= cmd false 1 iS'' {Bl^ + fib iC-1)) (B fib iC-2)) 10) 5 

=  +  f i b  ( C  -  D) ( B  f i b  { C  -  2)) 10 8 

= {mi +  f i b  ( C - 1 )  10) { B  f i b  ( C  -  2)) 10) 9 
=  ± ( / i 6 ( ( C ' - l )  1 0 ) )  ( / ^ ( ( C ' - 2 ) )  1 0 ) )  1 0  

The execution of every recursion level can be roughly divided into the evaluation 

of the conditional test and the evaluation of the "else" branch. The conditional 

test part is evaluated sequentially, as in the original SASL system. The "else" part 

distributes its work into two subtasks by initiating two new processes to evaluates 

t h e  a r g u m e n t s  o f  t h e  a d d i t i o n  o p e r a t o r .  T h e s e  n e w  p r o c e s s e s  r e c u r s i v e l y  c a l l  f i b  

and repeat the similar procedure. This procedure continues until the termination 

condition of fib is met. The initial task distribution can be observed from the 

spreading phase of the plot. If we ignore the spikes, the number of active processors 

increases like a "geometric ladder" for five steps; i.e., the number is doubled for a 

fixed amount of time, repeating five times. The increment comes from the fact that 

every process initiates two new child processes, which have similar form but with 

different arguments. Because of the recursion, the total number of processors grows 
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geometrically. The length of each step (except for the first) is about 12 ticks, which 

represents the time of setting up child process, performing the conditional test and 

evaluating actual parameters. This geometrical trend continues until some processes 

start to return their values and terminate. At this moment, the increment trend levels 

off because the increment introduced by the newly initiated processes is canceled by 

the terminating processes. This can be observed in the sixth step, in which the 

number of processors increases only slightly. Since a large number of processes can 

be terminated at same time, there are notches in the resolution phase. 

Now let us examine the source of the spike in each step. Although the intention 

of the previous annotation is to initiate the concurrent execution of fib (n-1) and 

fib (n-2), it may initiate three evaluations, namely fib (n-1), fib (n-2) and +, 

and therefore the number of active processors may be tripled. This can be better 

explained by changing the program to prefix form: 

f i b  n  =  n < 3  - >  1 ;  +  @ ( f i b  ( n - 1 ) )  @ ( f i b  ( n - 2 ) )  

When the evaluation of the "else" branch starts, + is eagerly evaluated by default 

and (fib (n-1)) and (fib (n-2)) by eager annotation. Thus, there is a possibility 

that three processes execute concurrently. The actual invocation of two branches is 

completed in two steps. First, reduction on (at tick 8) initiates the concurrent 

evaluation of + fib (C — 1)) 10 and {B fib (C — 2)) 10, which correspond to 

(+ (fib (n-1))) and (fib (n-2)) respectively. Then, the reduction on (at tick 

9) initiates + and fib {{€' — 1) 10), which correspond to + and (fib (n-1)). Since 

+ is a built-in function, its evaluation is completed in one tick and then suspended to 

wait for the values of its two arguments. Thus, for a very short time, there are three 
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active processes, which are responsible for the initial spike in every step. 

Discussion There are several interesting properties that can be observed from 

this example. First is the asymmetry of the spreading phase and the resolution phase. 

Compared to the resolution phase, the spreading phase has a relatively slow start. 

In a conventional multiprocessor system, this scenario would normally indicate that 

there is a substantial overhead in initiating a new process. However, this is not the 

case in our combinator-based system since the initiation of a new process only needs 

to pass one pointer that points to the root of the expression and does not involve any 

complicated context-switching or environment manipulation. Instead, our results can 

be attributed to the initial parameter distribution and sequential conditional test. 

The trace shows that it takes 7 ticks to perform the condition test, but only 3 ticks 

to complete the initiation of fib (n-1) and fib (n-2). Although it is partially due 

to the internal implementation of cond, the slow start of the spreading phase pri­

marily comes from the large overhead in parameter distribution of combinator-based 

systems. This is particularly true for the systems based on Turner's combinator set 

since they can only distribute the actual parameter one level at a time. The effect of 

the combinator's control tag is to force the concurrent execution of the two branches, 

but it will not to accelerate the parameter distribution in the "vertical dimension". 

Therefore, the distribution still takes place level by level, and the spreading phase is 

relatively sluggish. Once the parameters have been distributed to the proper places, 

there are relatively few "real" computations, such as -r and function initiation, and 

therefore the process terminates very quickly. Thus, the resolution phase is much 

faster than the spreading phase. 
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Another important observation is the effect of annotation. To study this, we 

annotated the program in several different ways. All the annotations initiate the 

concurrent execution of fib (n-1) and fib (n-2), though the variations introduce 

some subtle differences. For convenience, the prefixed expression is used for the rest 

of this section. The original program can be rewritten as 

f i b  n  =  n < 3  - >  1 ;  +  f l ( f i b  ( n - 1 ) )  @ ( f i b  ( n - 2 ) )  

The first variation is to drop the first "0"; i.e., 

f i b  n  =  n < 3  - >  1 ;  +  ( f i b  ( n - 1 ) )  @ ( f i b  ( n - 2 ) )  

The compiled code becomes 

Note that the corresponding tag on Bi is not used. This change makes the evalua­

tion of + (fib (n-1)) sequential and postpones the initiation of the evaluation of 

fib (n-1) for one tick. The trace shows this delay: 

= 5 (CI cond (< 3) 1) (5^ (B1 + fib (C - 1)) ( B  f  i b  ( C  -  2))) 10 1 

Note that initiation of the evaluation of f  i b  ( ( C  —  1) 10) is postponed from 

tick 10 to tick 11. The run-time profile is shown in Figure 5.2, accompanied by the 

f i b  = 5 (CI cond (< 3) 1) (S'^ {Bl -f f i b  (C - 1)) ( B  f i b  { C  -  2))) 

f i b  10 

S L { B L  +  f i b  ( C  - 1)) ( B  f i b  { C  -  2)) 10 
m -K fib {{C -1)1Q)){B fib {{C - 2) 10)) 
+ {fib{iC-l) 10)) {fib({C-2) 10)) 
+  { f i b { { C ~ l ) 1 0 ) ) { - - - )  

8 
9 

10 
11 
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number of active processors 

0 50 100 150 

system clock (tick) 

solid line; fib 1 0  where fib n  =  n < 3 - > l ;  +  Q(fib (n-1)) @(fib (n-2)) 

total time elapsed; 110 ticks total work done: 1304 reductions 
speedup: 11.84 

dash line: fib 10 where fib n = n<3 -> 1; + (fib (n-1)) @(fib (n-2)) 

total time elapsed: 118 tick total work done: 1304 reductions 
speedup: 11.03 

Figure 5.2: Profile with fib n = n<3->l; -|- (fib (n-1)) ©(fib (n-2)) 



www.manaraa.com

71 

profile of the original version. Because the task is now divided into two subtasks 

(i.e., + (fib (n-1)) and fib (n-2)), rather than three (i.e., +, fib (n-1) and 

fib (n-2)), the spikes in the previous profile disappear. The sequential execution 

of + (fib (n-1)) introduces a small period of delay, which makes each step shift to 

the right a little. Although the amount of shift is fairly small, it is accumulated in 

every step and its effect becomes more apparent as the execution progresses. There is 

a noticeable shift in the last step and the execution time is prolonged from 110 ticks 

to 118 ticks. 

The second variation shows the effect of nested annotation. Since the eager an­

notation affects only one level, the expressions nested inside the annotated expression 

still maintain their lazy semantics. This is the case for (n-1) and (n-2) since they 

are nested inside fib (n-1) and fib (n-2). We can continue tracing the execution 

of one branch of fib 10, say fib (10-1): 

(mi + fib {C -1) 10) 9 
=  ± { f i b { ( C - l )  10)) 10 

= + 5 (CI cond  ( <  3 )  l ) ( ( ; r  ( B l ^  +  f i b  { C  -  1 ) ) { B  f i b  ( C  -  2)))((C' - 1) 10) 

= + Ç1 cond (< 3) 1 ((C - 1) 10)(5'' {Bl^ + fib {C - 1)) 
( S / i 6 ( C ' - 2 ) ) ( ( C ' - l )  1 0 )  1 1  

= + cond (< 3 ( C  -  1 )  10)) 1 (5^ {Bl^ + fib [C - 1)) 
[ B  f  i b { C - 2 ) ) { [ C - 1 ) I Q )  12 

= + conrf (< 3 (C - 1) 10)) 1 (5^ (51^ +/i6(C'-1))(5/i6(C'-2)) 10) 13 

= + cond (< 3 Ç- 1) 10)) 1 (5'" (51^ + fib (C - 1)) ( B  f i b  ( C  -  2 ) )  1 0 )  1 4  

= + cond (< 3 - 10 1)) 1 (S'" (H^ + fib [C - 1)) { B  f i b  { C  -  2)) 10) 1.5 

=  +  c o n d  ( < Z  9 ) )  1 ( 3 ' ' +  f i b  ( C - 1 ) )  { B  f i b  { C - 2 ) )  1 0 )  16 

The trace shows that the evaluation of (C — 1) 10 is postponed until its value is 

required by the boolean expression in the conditional test, < 3 ((C — 1) 10). Because 
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we know that the argument of fib is strict and its value is eventually required, it can 

be annotated as eager to override the original lazy semantics; i.e., 

f i b  n  =  n < 3  - >  1  ;  +  ( S ( f i b  f l ( n - l ) )  ® ( f i b  Q ( n - 2 ) )  

The compiled code becomes 

f i b  =  S  (Cl cond (< 3) 1) + fib (C - 1)) ( B '  f i b  ( C  -  2))) 

The annotation introduces more parallelism since, during the function application, 

both the body and the argument of fib are evaluated simultaneously . For compari­

son, we can trace the execution of fib (10-1) again: 

{ B &  + f i b  { C - I )  1 0 )  9 
=  + { f i k { i C - l ) l O ) )  10 
= + 5 (CI cond (< 3) l)(y {Bl''- + fib (C - l))(g' fib (C - 2))) ((£ - 1) 10) 
= + a cond (< 3) 1 ((- 10 1)) {S' (Bl''- + fib (C - 1)) 

{B' fib (C - 2))((- 10 1)) 11 
= + corid (< 3 9) 1 (S-- (Bl' + fib (C - 1)) (B fib (C - 2)) 9) 12 

Because of the eager evaluation of the argument, the conditional test takes four 

fewer ticks, which considerably shortens the spreading phase. The run-time profile is 

shown in Figure 5.3, accompanied by the profile of the original version. There are no 

clear steps in this plot since the initiation of new processes becomes irregular. Com­

paring to the original annotation, the new scheme can extract a significant amount of 

parallelism in addition to the simple divide-and-conquer scheme. The total execution 

time decreases from 110 ticks to 89 ticks and the speedup increases from 12.0 to 14.5. 

The third observation concerns the order of initiation. At the first glance, the 

annotation ®(fib (n-1)) + Q(fib (n-2)) seems to initiate the two branches at 
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solid line: fib 10 where fib n = n<3 -> 1; +0 (fib (n-l)) (3(fib (ii-2)) 
total time elapsed: 110 ticks total work done: 1304 reductions 
speedup: 11.84 

dash line: fib 10 where fib n = ii<3->l; + «(fib a(n-l)) a(fib (D(ii-2)) 
total time elapsed: 89 ticks total work done: 1304 reductions 
speedup: 14.02 

Figure 5.3: Profile with f ib  n  =  n<3->l;  +  @(fib @(n-l ) )  @(f ib @(n-2))  
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the same time. However, this is not the case. From the trace, we know that the 

two branches are initiated by different combinators tags, and that the right branch is 

initiated one tick earlier. This is due to the inherent design of SASL, namely the fully-

curried expression. That is, while expressions like @(fib (n-1)) + ©(fib (n-2)) 

are written in infix form for the convenience of programmers, internally they are 

represented in curried form, (+ Q(fib (n-1))) @(f ib (n-2)). Since the left branch 

is nested one extra level, its initiation is delayed. The asymmetry in initiation raises 

a subtle point about determining the best way to distribute the load. Because the 

+ operator is commutative, its two branches can be swapped. Since the fib (n-1) 

branch contains more work than fib (n-2) branch, it may be better to initiate the 

evaluation of fib (n-1) first; i.e., switch it to the right branch. To highlight the 

difference, consider the two following versions: 

fib n = n<3 -> 1; + (fib (n-1)) @(fib (n-2)) 

fib n = n<3 -> 1; + (fib (n-2)) @(fib (n-1)) 

Although the two versions are semantically equivalent, the second version seems to 

be better since fib (n-2), which contains less work, is grouped with + and fib 

(n-1), which contains more work, is invoked earlier. The run-time profiles of the two 

versions are shown in Figure 5.4, where we can see that our assumption is correct. 

The resolution phase in the second version is shorter, and the total execution time 

decreases from 118 ticks to 111 ticks. 

The last observation concerns about the initiation of the arguments of the strict 

operators. As mentioned in the previous chapter, one alternative scheme to invoke 

the eager evaluation of the arguments of strict operators is to change the internal 
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number of active processors 

0 50 100 150 

system clock (tick) 

solid line: fib 10 where fib n = n<3 -> 1; + (fib (n-2)) ®(fib (n-1)) 

total time elapsed: 118 ticks total work done; 1304 reductions 
speedup: 11.03 

dash line: fib 10 where fib n = n<3 -> 1; + (fib (n-1)) «(fib (n-2)) 

total time elapsed: 111 ticks total work done: 1304 reductions 
speedup: 11.73 

Figure 5.4: Comparisons between the two commutative versions 
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evaluation mechanism so that the evaluation of the arguments will be automatically 

initiated. We compared this mechanism with the previous annotated example. Since 

there is no annotation, all the tags in the combinatory code are dropped: 

f ib  =  S  (Cl cond  {< 3) 1) {S  {Bl  +  f ib  (C - 1)) {B  f ib  (C  -  2))) 

The execution trace becomes: 

f ib  10 
= 5 (CI cond  (< .3) 1) (S  {Bl  +  f ib  (C - 1)) {B  f ib  (C  -  2))) 10 1 

= S {BI  +  f ib  (C - 1)) (5 f ib  (C - 2)) 10 8 
= {Bl  +  f ib  (C - 1) 10) {B  f ib  (C  - 2)) 10) 9 
= ±  { f ib  {{C -  I)  IQ))  (B  f ib  {C-2) )  10)  10 
= + (/^((C'-l) 10))) (5/i6(C'-2)) 10) 11 

While compared to the original trace, both the initiation of the evaluation of f ib  ((C — 

1) 10) and f ib {(C — 2) 10) are delayed until the evaluation of + is done. While the 

former is postponed from tick 10 to tick 11, the later is postponed from tick 8 to 

tick 11. The run-time profile is shown in Figure 5.5, accompanied by the profile 

of the annotated version. The initiation process becomes even slower and the major 

computation curve shifts further to the right. This example shows that the annotated 

version is better because the evaluation of the arguments can be started before the 

evaluation of operator is completed. 

Summary fib demonstrates many interesting properties of the proposed an­

notation scheme. It shows the annotation scheme is fairly general and flexible. By 

proper annotation, we can achieve the desired effects such as the concurrent eval­

uation of two branches and the eager evaluation of the strict arguments. On the 
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solid line; f ib 10 where f ib n = n<3->l; + (fib (n-2)) (fib (n-1)) 
total time elapsed; 119 ticks total work done: 1304 reductions 
speedup: 10.94 

dash line: fib 10 where fib n = n<3->l; + 0 (fib (n-2)) 0 (fib (n-1)) 

total time elapsed: 110 ticks total work done: 1304 reductions 
speedup: 11.84 

Figure .5.5: Profile with f ib  n  =  n<3->l;  +  (f ib  (n-2))  ( f ib  (n-1))  
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other hand, fib also shows some subtlety of the annotation, as demonstrated in the 

various variations. To "fine-tune" a program, the programmer needs an in-depth un­

derstanding of the characteristics of the program and the internal curry mechanism of 

the SASL system. However, because the execution order of code segments written in 

a functional language is not significant, any annotation will usually lead to substantial 

performance improvement, even when the annotation is not optimal. We therefore 

claim that this scheme is much simpler and more effective than other conventional 

techniques. 

In summary, this benchmark has shown that a considerable amount of parallelism 

can be extracted by our proposed annotation scheme and the overall computation can 

be speeded up by a factor of fourteen, even for a small input number. The major 

limitation of this scheme is the slow parameter distribution, which contributes to the 

relatively slow spreading phase of the fib. This comes from the fact that whereas 

the proposed system invokes the concurrent evaluation of function body and function 

argument, it still distributes parameters one level at a time and does not speed up 

the execution in the "vertical" dimension. To further speed up the execution, we 

may need to employ more complicated combinator sets, such as Abdali's combinator 

and super combinator, to decrease the overhead in the parameter distribution and to 

shorten the spreading phase. 

Benchmark 2: map 

Map is a function that applies a second function to every element in a list. The 

SASL code for map is: 

map f 0 = () 
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map f (a:x) = (fa) : (map f x) 

Map has several characteristics that are frequently encountered in symbolic program­

ming. First, it represents a widely-used style to code list-oriented operations. In 

this kind of code, a new list is constructed by first defining how to generate its head 

and tail ((f a) and (map f x) respectively here), and then combining them by the 

constructor Because the list is the only available data structure in SASL, the 

role played by the list operation becomes more significant. Second, the first parame­

ter to map is a higher-order function (i.e., functional argument f ), which is common 

in functional programming. Therefore, map can be used to test the efficiency of the 

implementation of second-ordered structures. 

Simulated results To obtain potential parallelism, map can be annotated to 

evaluate the head and tail simultaneously: 

map f 0 =0 
map f (a:x) = @(f a) : @(map f x) 

Although this is legitimate SASL code, it employs the internal pattern-matching 

mechanism and introduces a new dimension of complexity because of the new com-

binators such as TRY, MATCH, U, etc. To avoid this, we rewrite it in a more 

"traditional" form: 

map f 1 = 1 eq 0 -> (); @(f (hd 1)) : «(map f (tl 1)) 

In this version, pattern-matching is replaced by a conditional test and by tl and hd 

operators. In our implementation, both the pattern-matching and the conditional 
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test are performed sequentially; therefore, the two versions are essentially the same. 

The compiled code map corresponding to the above annotation is: 

ma'p  =  B  {S  {CI  cond  {C eq  n i l )  n i l ) )  (51 (C  B  hd)  (CI B map t l ) )  

The effect can be best explained by the following demonstration. In this example, 

several "dummy" functions, dl, d2, d3 and d4, are used to generate sequential com­

putations of various lengths, and four test functions (maptestx) force every element 

in the list to be evaluated. 

d l x s x & x & x & x A x & x & x & x & x & x & x & x  
d2 X = dl (dl x) 
d3 X = d2 (d2 x) 
d4 X = d3 (dS x) 
dlist = (true, true, true, true, true, true, true, true, true, true) 
maptestl = map dl dlist 
maptest2 = map d2 dlist 
maptestS = map dS dlist 
maptest4 = map d4 dlist 

The profile of this test program is shown in Figure 5.6. We first study raaptest4 

and then explain the remaining functions. The profile of maptest4 has a trapezoidal 

shape with staircase-like sides. Unlike the previous divide-and-conquer example, in­

terpretation for this plot is not obvious. The best explanation comes from the detailed 

trace of the execution: 
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map d i  d l i s t  

=  B_{S  (CI  cond  (C  eq  n i l )  n i l ) )  (51 (C  B  hd)  (CI B map t l ) )  dA  d l i s t  1 

= 5 (CI cond (C eq nil) nil)) ((51 Sp (C B hd) (CI B map tl)) c/4) dlist 2 

=  Ç1 cond  (C  eq  n i l )  n i l )  d l i s t  ( ( (51  Sp^^  (C  B  hd)  (CI  B map t l ) )  d4)  d l i s t )3  

= cond (C eq nil dlist) nil) (((51 Sp^^ (C B hd) (CI B map tl)) d4) dlist) 4 

= Sp^^  (C  B  hd)  (CI B map t l )  dA d l i s t  10 

= ^  ((C B hd)  d i )  ((CI B map t l )  dA)  d l i s t  11 
= {C,  B  hd  d i  d l i s t )  :  {ÇA B  map t l  d i  d l i s t )  12 
= (S c/4 hd  d l i s t )  :  (5 (map  (/4) t l  d l i s t )  13 
= {di  (hd  d l i s t ) )  :  { (map  d i )  ( t l  d l i s t ) )  14 

=  ( • • • ) :  { M  ( h d  ( t l  d l i s t ) ) )  :  { ( m a p  c/4) ( t l  ( t l  d l i s t ) ) )  31 

The first 10 ticks perform the conditional test where the execution is sequential 

as in the standard SASL system. The key step is tick 11, where the h and t tags 

of Sp initiate the eager evaluation of the head and the tail respectively. While the 

old process is inherited by the evaluation of the head, a new process is created for 

the evaluation of the tail. The two processes are executed concurrently from tick 12 

and are responsible for the step in Figure 5.7 at tick 12. Since the tail part uses map 

recursively, its execution is similar to the previous process except that the input list 

is one element shorter. This procedure repeats itself for several times until the list is 

empty. 

The exact run-time behavior can be best demonstrated in Figure 5.7. Every slot 

in the figure represents an independent process, including the initial conditional test 

and the evaluation of the head. As the execution progresses, each element becomes 

the head of the list and its evaluation is initiated accordingly. This initiation explains 
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Figure 5.6: Profile of map with four different input functions 
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Figure 5.7: The process chart of maptest4 
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the regular upward staircase in the plot. The first ten steps represent the initiation 

of the ten elements and the last step represents the terminal condition test. Since 

the evaluation of the element takes the same time, the length of the slots is the same 

except for the last slot, which is considerably shorter since it performs the termination 

test and does not include the evaluation of an element. 

The three remaining test functions, maptestS, maptest2 and maptestl, can be 

interpreted in a similar way. However, because the function performed on the element 

is much simpler, the computation time decreases and hence the slot becomes shorter. 

In maptestS, the plateau disappears. In maptest2 and maptestl, a process may 

terminate before the last process is initiated and hence the computation can never 

reach to the point where all ten processes are active. 

Discussion There are several interesting observations that can be made about 

this benchmark program. First, the speedup of map depends primarily on the com­

plexity of the function f, which is performed on every element of the list. If f is 

complicated, each process will take more time to complete and increase the potential 

for concurrent execution, which contributes to the total speedup. On the other hand, 

if f is simple, each process will terminate quickly, even before the other processes has 

been initiated, and introduce very little parallelism. This scenario is clearly shown in 

the four previous test functions. 

A more detailed explanation can be formalized as follows. Note that each process 

can be divided into the execution of the conditional test, Tc, and the evaluation of 

applying the function to a element, Ty, as shown in the Figure 5.7. The Ty part 

is overlapped with another process since at that time the evaluation of tail is also 
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initiated. If we ignore the last termination-testing process, the time spent on the 

evaluation of a list with N elements in a sequential system, Tg, and in a multiprocessor 

system, Tm, are: 

Ts = N{Tc + Tf) 

Tm — NTc + Tj: 

And the speedup, S, is: 
r, _ NTc +  NTf  

^ Tm. NTc + Tf 

As the value of Ty increases, S will increase because of the large N in the numerator. 

An interesting point about speedup is the case where Ty is large. If the Ty Tc, 

the S can be approximated by 

NTc + NTf NTf 
S  =  L  ^  —L = pj  

NTc  +  Tf  ~  T f  

This speedup is just what we can expect from an idealized vector processor. In other 

words, if the function is complicated enough, evaluating map in a combinator-based 

multiprocessor can achieve the results similar to those of a vector processor. 

The second observation is on the source of parallelism. At the first glance, eager 

evaluation and lazy structures seem to be two incompatible concepts; however, they 

can be nicely incorporated into the combinator-based multiprocessor system. The 

operation of the lazy list can be divided into two basic parts, namely the evaluation 

of the head and the construction of a closure. The original purpose of the closure is 

to save the necessary information so that the evaluation of the tail can be resumed 

later. Since the closure contains all the necessary information, it is possible to move 

the closure,to another processor and to start the evaluation of the tail. If the overhead 



www.manaraa.com

86 

for constructing the closure is small, the evaluation of the head and tail can be per­

formed concurrently. Furthermore, if the evaluation of the tail recursively invokes the 

evaluation of the new head, as in map, several processes' execution can be overlapped 

and a considerable amount of parallelism can be extracted. Although this concept 

can be applied to all kinds of multiprocessor systems, the complexity and the high 

overhead involved in the closure construction make it difficult for environment-based 

systems. On the contrary, the closure construction can be done by assigning a pointer 

and introduces virtually no overhead in a combinator-based system; thus, this scheme 

is particularly effective for our proposed system. 

Benchmark 3: insertion sort 

Isort sorts a list of numbers in descending order by inserting each element 

sequentially: 

isort 0 = 0 
isort (a:x) = insert a (isort x) 
insert a () = a, 
insert a (b:x) = a < b -> (a:b:x); b:(insert a x) 

Unlike the previous programs, isort does not fit well into any "conventional" mul­

tiprogramming paradigm. If we treat operations on a list as undivisible and atomic, 

isort's operation is completely sequential since in the isort (a:x), the insertion of 

a cannot start until the (isort x) is done. There is no opportunity to divide the 

process into smaller child processes or to initiate homogeneous computation on every 

element of the list. Thus, it is very hard to extract parallelism from this program by 

using conventional techniques. However, because of the lazy structure, there is still a 
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chance to exploit some hidden parallelism in the corabinator-based system. To speed 

up the execution, we can annotate the insert part to force eager construction of the 

list: 

isort 0 = 0 
isort (a:x) = insert a (isort x) 
insert a 0 = a, 
insert a (b;x) = a < b -> (a:b:x); b:@(insert a x) 
isorttest = isort (10:9:8:7:6:5:4:3:2:1) 

The profile of the isorttest is shown in Figure 5.8, which indicates that the 

execution is accelerated by a factor of 2.5. The source of the speedup comes from 

the concurrent evaluation of the head and the tail, as in the execution of map. How­

ever, this parallelism is more implicit and is automatically formed during the list 

construction. Since the operation of isort in the combinatory level is similar to that 

of map, we focus on the operation of a more abstract level in this subsection. Its effect 

can be best explained by tracing the execution. For simplicity, a shorter sequence, 

(5:4:3:2:1), is considered: 

i sor tb  : 4 : 3 : 2 : 1 
= inser t  5  { i sor t  4 : 3 : 2 : 1 )  1  
= inser t  5 { inser t  4 { i sor tZ  : 2 : 1)) 2 

= inser t  5 [ inser t  4 ( inser t  3 [ inser t  2 [ inser t  1 ( i sor t  NIL) ) ) ) )  3 
= inser t  5 [ inser t  4 [ inser t  3 [ inser t  2 i inser t  1 NIL)) ) )  4 
= inser t  5 [ inser t  4 [ inser t  3 { inser t  2 (1, )))) 5 
= inser t  5  [ inser t  4  { inser t  3 ( 1 :  ©[inser t  2  NIL)) ) )  6  
= inser t  5  [ inser t  4  ( inser t  3 ( 1 :  ( inser t  2  NIL)) ) )  

Initially, i sor t  recursively invokes inser t  until i sor t  reaches the termination con­

dition, as in the step 3. After isort returns NIL, the innermost insert becomes active 
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Figure 5.8: Profile of isort (10:9:8:7:6:5:4:3:2:1) 
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again and returns a list of one element, (1, ), as in step 4. In step 5, another inser t  

becomes active and returns a partial result, (1 : ©{insert 2 NIL)). In step 6, the 

evaluation of insert 3(1: {insert 2 NIL)) is initiated because the first element of 

the list, namely I, is available. At the same time, because of the eager annotation, 

the evaluation of insert 2 NIL continues and therefore the execution is overlapped. 

As the execution progresses, the evaluation of other insert can be initiated as soon 

as the first element of the input list is available and may introduce new overlapped 

operation. As shown in the profile, the number of active processes can reach five for 

the ten-element list. In this benchmark, the execution implicitly builds a "pipeline" 

for the list construction so that the head can be piped to the required function even 

when the value of the tail is still under evaluation. 

The two previous benchmarks show that eagerly evaluating lazy structures is a 

very powerful mechanism. It can automatically overlap list operations and introduce 

considerable parallelism. Because the overhead associated with closure construction 

is negligible in combinator-based systems, this mechanism can be applied in small 

granularity and extract a considerable amount of fine-grain parallelism. 

Effects of Annotation on Some Realistic Benchmarks 

In this section, we study the effectiveness of the proposed annotation scheme by. 

observing the run-time profile of some "realistic" benchmark programs. Unlike the 

programs in the previous section, the execution of these programs is less regular and 

their run-time behavior represents the interaction of various features. Thus, instead 

of analyzing one specific feature and tracing the program execution, we only observe 
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the overall effect of the programs in this section. 

Since SASL is a newly developed language, there are relatively few existing 

benchmarks. The major part of our benchmark programs are adapted from Lisp 

[15] [60]. The major difference between Lisp and SASL is that real-world Lisp is only 

a quasi-functional language, which includes "procedural" constructs, such as assign­

ment (e.g., setq), destructive structure operation (e.g., conc) and sequential execution 

(e.g., *let). Thus, some programs needed to be extensively modified to accommodate 

the framework of SASL. Despite the modification, we tried to keep the "structure" of 

the original programs intact. In other words, we did not modify or fine-tune the pro­

grams to fit our system; instead, we just faithfully transformed the original programs 

and added proper annotation. 

Because of the time and space limitations of the simulator, the benchmark pro­

grams are fairly small. Many of them are only the "toy version" of the actual pro­

grams. However, despite their size, these programs are representative and employ 

a variety of symbolic programming techniques. The detailed programming listing is 

attached in the Appendix. 

Benchmark 4; tak 

Tak is a widely used benchmark program in the Lisp environment. It generates 

irregular function calls and is used to test the function call and primitive arithmetic 

operations. The profile of tak 9 6 3 is shown in Figure 5.9. 
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Figure 5.9: Profile of tak.test 



www.manaraa.com

92 

Benchmark 5: tautology checking 

Taut checks whether the input logical function is a tautology. It is used to test 

higher-order structures and primitive logical operations. The eagerness annotation 

changes the lazy OR and AND operators into strict operators and may introduce 

some redundant computation. This is the only speculative annotation in our bench­

mark programs. The profile of a four-argument predicate function is shown in Fig­

ure 5.10. 

Benchmark 6: insertion sort revisited 

We employ the same isort program but with a more realistic input list. The 

input list now contains 100 randomly generated numbers. The profile of this input is 

shown in Figure 5.11. 

Benchmark 7: quick sort 

Qsort sorts by the quick sort method. Quick sort can apply divide-and-conquer 

strategy since the input list is divided into two sublists recursively. However, because 

the division depends on the value of the pivot, the two sublists may not be well-

balanced and thus the load may not be evenly distributed. The profile of sorting 100 

randomly generated numbers is shown in Figure 5.12. 

Benchmark 8: matrix multiplication 

Matrix performs matrix multiplication. Although it is a classic benchmark for 

numerical computation, it is used here to test the list operations here since SASL 
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Figure 5.10: Profile of taut_test 
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Figure 5.11: Profile of isort_test2 
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Figure 5.12: Profile of qsort.test 
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does not provide any indexed structures or vector capability. The major part of the 

computation is spent in complicated list manipulation which transforms the input 

list into a form needed for the inner-product function. Therefore, in SASL, matrix is 

more or less a list manipulation benchmark. The profile of the multiplication of two 

eight by eight matrices is shown in Figure 5.13. 

Benchmark 9: sparse matrix multiplication 

Smatrix performs sparse matrix multiplication. It can be efficiently represented 

by an adjacent list containing only non-zero entries which are represented by a tuple 

containing the index and value. For example, consider (0,1,0,0,0,0,0,3), a single 

row from an 8 by 8 matrix. The new representation can be written as ((2,1),(8,3)), 

which is more efficient and compact than the original 8-entry vector. This program 

also tests list operations. However, unlike matrix, the pattern of data accesses is 

highly irregular. The profile of the multiplication of two eight by eight matrices is 

shown in Figure 5.14. 

Benchmark 10: convolution 

Conv performs the convolution of two vectors. The definition of convolution can 

be  descr ibed  as  fo l lows :  l e t  a  =  (oq ,  . . .  and  b  =  (695  •  •  •  —1 )  two  n  

dimension vectors, and c  = (eg,... ,C2n—2)  their convolution, then 

72-1 
Cj  =  '^k  =  b}^  =  Q,  i i  k  <  0  ov  k  >  n  

i=o 

Since the two lists are accessed in a regular pattern, this program is written as an 

operation between two streams a, 6. The profile of the convolution of two eight-
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Figure 5.14: Profile of smatrix_test 



www.manaraa.com

99 

element lists is shown in Figure 5.15. 

Benchmark 11: symbolic RLC impedance 

Impedance finds symbolic impedance of a RLC circuit in the s-domain. This 

program includes two major parts: the manipulation of a polynomial and the inter­

pretation of the input symbols. The first part is implemented as a special abstract 

data type, rational polynomial^ which is represented as a numerator-polynomial and 

denominator-polynomial pair. Five operations, including initiation, addition, sub­

traction, multiplication and division, are defined on it. Previous convolution is used 

to find the coefficients of polynomial multiplication. The second part employs two 

implicit dispatchers based on the circuit type (parallel or serial) and element type 

(R, L or C) respectively. According to the specific type, the dispatcher invokes the 

corresponding routine, which is composed by the operations defined on the rational 

polynomial type. The profile of a twelve-element RLC circuit is shown in Figure 5.16. 

Benchmark 12: ZF set 

set is a simplified version of SASL's ZF set, which provides a simple way to 

manipulate a list. The set first filters the input list according to a designated pred­

icate function and then produces the new list according to a designated generating 

function. The profile of the operation of a ten-element list is shown in Figure 5.17. 
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Benchmark 13: production system 

expert is a toy forward-chaining production (expert) system. The input includes 

an assertion database, which states some initial facts, and an IF-THEN rule database, 

which contains a set of relevant rules. The internal control mechanism will derive all 

the implicit facts. Inferring new facts from a rule is the key operation of this program. 

It includes two major phases: the IF part will first be tested by a series of pattern 

matching, filtering, and variable binding; if all conditions are satisfied, then the THEN 

part will be bound to the corresponding value and be added into assertion database. 

An upper-level control will thread the individual rule and cycle the assertion database 

to obtain the final answer. The test database is used to guess the type of a animal, 

which includes four rules and five facts. The run-time profile is shown in Figure 5.18. 

Summary 

In this section, we have shown that the annotation scheme can extract a con­

siderable amount of parallelism from a wide range of application programs. Most of 

these programs have irregular and unstructured run-time behavior and are difficult, 

if not impossible, to be parallelized by conventional techniques. Moreover, instead 

of writing new parallel versions, we keep the original sequential programs intact and 

just augment them with proper annotation. 

Because of the complex run-time behavior, the source of the parallelism is hard 

to analyze. The taut and qsort benchmarks exphcitly apply divide-and-conquer 

strategy, though the division is not well-balanced. The other benchmarks exploit 
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parallelism from the eager evaluation of the strict arguments and from the eager 

evaluation of the lazy structures. The eager evaluation of lazy structures plays an 

important role in these programs. If the annotation can construct one or more "im­

plicit pipelines", as in isort matrix and set, a significant number of operations 

can be overlapped and a great speedup can be achieved. On the other hand, if the 

pip eh ne operation cannot be continued, as in the expert and circuit, the number 

of active processors grows up and down, which is reflected in the various peaks in the 

plot. Thus, even though the annotation scheme can be applied to the sequential code 

directly, it may be sometimes necessary to rewrite programs to construct the pipeline 

operation. 
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK 

Conclusions 

In this dissertation, we have developed a scheme to extend the SASL system so 

that it can be incorporated into a multiprocessor environment. This scheme intro­

duces extra control information which can selectively initiate the eager evaluation of 

the designated expressions. This information is specified by adding annotation to the 

original sequential SASL programs and then transferring it to the control tags of the 

combinators. The transfer is performed by the extended compiling and optimization 

algorithm, which can translate the annotation to proper control tags and propagate 

this information when the combinatory code is simplified. 

To measure the effectiveness of our scheme, we have simulated a set of programs 

on an idealized shared-memory multiprocessor system. The results show that this 

scheme can be applied to a wide variety of applications and can extract a consid­

erable amount of parallelism, even when the execution of the programs is irregular 

and unstructured. Moreover, we have found that the eager evaluation of the lazy 

structures is a very powerful concept. It can overlap the list operation and extract 

parallelism which otherwise cannot be exploited. Because of the environment-free 

nature of combinator-based systems, this concept introduces very little overhead in 
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our proposed system and therefore it can be applied in fine granularity, which in turn 

significantly speeds up the overall computation. 

Although our scheme can be readily applied to the sequential programs, in-depth 

understanding of the program behavior and the internal mechanism of this scheme 

is still essential to exploit maximal parallelism. While some programs, like the fib 

benchmark, need to be slightly modified to increase efficiency, the other, like the 

circuit and expert benchmarks, may need to be redesigned to construct a pipeline 

so that more parallelism can be extracted. Thus, to certain degree, this scheme is still 

not "transparent" to the programmer and imposes some requirements on the program 

design. 

It is concluded that our annotation scheme provides a simple but effective way 

to extract the fine-grain parallelism, at least at the virtual level, for non-numeric ap­

plications. It is also concluded that combinator-based systems can easily be extended 

so that their programs can be evaluated in parallel. 

Future Work 

This dissertation has investigated only one aspect of combinator-based multi­

processor systems. Future research can be continuously conducted in several areas. 

One major topic is whether there is a physical architecture that can efficiently sup­

port the parallel graph reduction. As in any other multiprocessor system, the major 

bottleneck will be the global memory and bus bandwidth. During the course of per­

forming this research, we have collected data and analyzed subsets of many of the 

above problems. Our intuition would lead us to believe that this scheme would not re­
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quire more hardware resources than other multiprocessor systems, and, with a proper 

cache organization [14] and naming scheme, the virtual system can be mapped to a 

real system containing a small number (e.g., 4 to 16) of processors without losing too 

much efficiency. 

One limitation of our scheme is the slow parameter distribution, which prolongs 

the initial spreading phase and hinders the overall speedup. This problem is carried 

from the Turner's combinators, which can only distribute the parameters one level at 

a time in the expression tree, and cannot be accelerated in the "vertical dimension". 

However, we believe this limitation can be avoided if a more powerful combinator set, 

such as Abdali's set, is employed. 

In summary, our current work can be furthered in following areas: 

• Memory reference characteristics of the benchmark programs. 

• Space requirement of the eagerly evaluated lazy structures. 

• Design of an architecture, especially the memory organization part, to support 

the proposed scheme. 

• Annotation to specify other control information, such as scheduling, load bal­

ancing and graph distribution. 

• Control of the AND/OR parallelism from the pattern matching. 

• Control tags and optimization algorithm for other combinator sets. 
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APPENDIX. BENCHMARK PROGRAM LISTING 

I  I  THE BENCHMARK PROGRAMS 

I  I  tak 

tak X y z = *®(y < x) -> z ;  

tak Q(tak @(x-l)  y z) 0(tak Q(y-l)  z x) 0(tak Q(z-l)  x y) 

tak.test = tak 9 6 3 

I  I  tautology 

I I  f  is a logic predicate with n variables 

taut 0 t  = t  

taut n f  = taut (n-1) ( f  TRUE) & @(taut (n-1) ( f  FALSE)) 

test_pred w x y z = (z & w & 'x) I  ("y j x & z) I  (x & y) I  "x I  x 

taut. test = taut.a 4 test.pred 

I  I  insert ion sort 

isort  0 = 0 

isort  (a:x) = insert a ( isort  x) 

insert a ()  = a, 

insert a (b:x) = a < b ->a:b:x 

b :  @(insert a x) 

isort_test2=isort  

(52,18,31,54,95,18,71,23,50,13,9,39,28,37,99,54,77,65,77,79, 

83,16,63,32,35,92,52,41,61,79,94,87,87,68,76,59,39,36,21,83, 

42,47,98,13,22,96,74,41,79,76,96,3,32,76,25,59,5,96,32,6,45, 
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92,58,12,57,26,50,24,48,41,88,43,36,39,5,17,53,70,10,41,78, 

25,35,23,30,31,89,4,66,40,68,74,94,24,84,97,78,44,68,81) 

I  I  quick sort  
app X y = y ++ X 

qsort 0 = 0 

qsort (a:x) = app @(a :  @(qsort n)) @(qsort m) 

WHERE m = small ist  a x 

n = largel ist  a x 

small ist  pivot ()  = ()  

small ist  pivot (a;x) = pivot > a -> a:(small ist  pivot x);  

(small ist  pivot x) 

largel ist  pivot ()  = ()  

largel ist  pivot (a:x) = "(pivot > a) -> a:( largel ist  pivot x);  

( largel ist  pivot x) 

qsort_test=qsort 

(52,18,31,54,95,18,71,23,50,13,9,39,28,37,99,54,77,65,77,79, 

83,16,63,32,35,92,52,41,61,79,94,87,87,68,76,59,39,36,21,83, 

42,47,98,13,22,96,74,41,79,76,96,3,32,76,25,59,5,96,32,6,45, 

92,58,12,57,26,50,24,48,41,88,43,36,39,5,17,53,70,10,41,78, 

25,35,23,30,31,89,4,66,40,68,74,94,24,84,97,78,44,68,81) 



www.manaraa.com

117 

I 1 matrix.s - matrix multiplication 

pmap f 0 = 0 

pmap f (h:t) = @(f h) : @(pmap f t) 

pzip x=hdx=() -> ()  

pmap hd x: pzip (pmap tl x) 

mult X y = pmap (pmap IP) (pmap dist l  (distr  (x,  pzip y)))  

IP X = sum (pmap product (pzip x)) 

dist l  (a,x) = pmap (pair  a) x 

distr  (a,x) = pmap (rpair  x) a 

pair  a b = a,b 

rpair a b = b,a 

m8 = ((1,2,3,4,5,6,7,8),  

(1,2,3,4,5,6,7,8),  

(1,2,3,4,5,6,7,8),  

(1,2,3,4,5,6,7,8),  

(1,2,3,4,5,6,7,8),  

(1,2,3,4,5,6,7,8),  

(1,2,3,4,5,6,7,8),  

(1,2,3,4,5,6,7,8),  

(1,2,3,4,5,6,7,8),  

(1,2,3,4,5,6,7,8)) 

matr ix. test = mult  m8 m8 

I I multiplication of sparse matrices 

II 

I I matrix is represented as a list of (row-index row-vector*) 

I I e.g. 10 4 0 1 (  (1, (2,4) )  

II I 0 0 0 I is (3, (1,5),(2,6)) 

II 15 6 0 1 ) 

scalev s vector = pmap (scale s) vector 

scale s (index,val) = (index, s*val) 

I I addv - add vector a, b 

addv X 0 = X 

addv 0 y = y 

addv (ha:ta) (hb:tb) = (hd ha) < (hd hb) -> ha: 0(addv ta (hb:tb)) 

(hd ha) > (hd hb) -> hb: @(addv (ha:ta) tb) 

Q((hd ha),(hd (tl ha)+hd (tl hb))):@(addv ta tb) 

I I multvm - multiplication of a vector and matrix (v * m) 
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I  I  multr  -  construct ing a complete row of (v *  m) 

multvm m 0 = ()  

multvm 0 V = 0 

multvm (hm:tm) (hv:tv) = (hd hv) < (hd hm) -> (multvm (hm:tm) tv) 

(hd hv) > (hd hm) -> (multvm tm (hv:tv)) 

addv (scalev (hd ( t l  hv)) ( t l  hm)) 

®(multvm tm tv) 

multr  m (h:vec) = h:<3(multvm m vec) 

I  I  multmra -  mult ipl icat ion of a matr ix m, n (m *  n) 

mult  m n = pmap (multr  n) m 

sparse.test = mult  

((2,(1,5),(3,4),(6,2).(7,3)).  

(3,(2,2),(5,8) ) ,  

(4,(3,2),(4,8) ) ,  

(6,(1,2),(5,8),(6,2),(7,4),(8,1)),  

(8,(1,2),(2,5),(5,8),(6,2),(7,4),(8,1)) 

) 
(  (1,(1,2),(3,4),(6,9),(8,2)),  

(2,(2,3),(3,6)),  

(5,(1,2),(3,4),(4,7),(5,1),(6,9),(8,2)),  

(6,(5,1),(6,9),(8,2)),  

(7,(6,9),(8,2)),  

(8,(5,9),(7,2)) 

) 
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I l  conv.s -  convolut ion of two vector 

reverse = foldl  cons ()  

foidl  op r  0 = r  

foldl  op r  (a:x) = foldl  op Q(op a r)  x 

I I  rev c 1 n -  reverse l ist  n with IcI-1 leading O's; 1 is for temp storage 

rev ()  1 0 = 1 

rev (a,) 1 () = 1 

rev 0 1 (h:t)  = rev ()  (h: l )  t  

rev (a,) 1 (h:t)  = rev ()  (h: l )  t  

rev (hc:tc) 1 () = rev tc (0:1) ()  

rev (hc;tc) 1 (h;t)  = 0;Q(rev tc (h: l )  t )  

I  I  shif t  1 - generate a l ist  of "shif ted l ist"  

II  e.g. shif t  (1,2,3) = (1,2,3),(2,3),(3.) 

shif t  (a,)  = (a,) ,  

shif t  (h:t)  = (3(h:t)  :  0(shif t  t )  

bimap f  ()  q = ()  

bimap f  p ()  = ()  

bimap f  (hp:tp) (hq:tq) = ®(f hp hq) :  Q(bimap f  tp tq) 

prod_l ist  m n = pmap (bimap t imes m) (shif t  (rev m ()  n)) 

conv m n = reverse (pmap sum (prod. l ist  m n)) 

conv.test = conv (1,2,3,4,5,6,7,8) (8,7,6,5,4,3,2,1) 

I  I  circuit  

bimap1 unit  f  ()  0 = 0  
bimapl unit  f  ()  (hq:tq) = @(f unit  hq) :  0(bimap1 unit  f  ()  tq) 

bimapl unit  f  (hp:tp) ()  = Q(f hp unit)  :  @(bimapl unit  f  tp ())  

bimapl unit  f  (hp:tp) (hq:tq) = @(f hp hq) :  0(bimapl unit  f  tp tq) 

addv m n = bimapl 0 plus m n 

di f fv m n = bimapl 0 minus m n 

WHERE minus x y = x -  y 

I I  polynomial operat ion: 

makep d n = (hd d)=0 & (hd n)=0 -> makep ( t l  d) ( t l  n);  (d,n) 

den p = hd p 

num p = hd ( t l  p) 

prodp pi  p2 = makep @(conv Q(den pi)  

@(conv @(num pi)  

quotp pi  p2 = makep Q(conv 9(den pi)  

@(conv 3(num pi)  

Q(den p2)) 

Q(num p2)) 

â(num p2)) 

Q(den p2)) 
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sump pl  p2 = makep @(conv @(den pl)  (3(den p2)) 

Q(addv Q(conv (den pl)  (num p2)) 

(3(conv (num pl)  (den p2))) 

di f fp pl  p2 = makep Q(conv Q(den pl)  @(den p2)) Q(dif fv Q(conv ®(num pl)  

3(den p2)) 0(conv @(den pl)  @(num p2))) 

I  I  circuit  simulat ion -  f ind impedance ( in the s-doraain) of the circuit  

L h = makep (1,)  (0,h) 

R r  = makep (1,)  (r ,)  

C c = makep (0,c) (1,)  

S z l  z2 = sump z l  z2 

P z l  z2 = quotp Q(prodp z l  z2) @(sump z l  z2) 

I  I  a RLC with 12 elements 

c ircuit . test = S (P (S (C 2) 

(P (R 6) 

(L 7)))  

(P (R 4) 

(S (L 3) 

(C 2))))  

(P (S (C 2) 

(P (R 6) 

(L 7)))  

(P (R 4) 

(S (L 3) 

(C 2))))  
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M set :  simulate SASL's l ist  comprehension (or ZF set) 

app X y = <ay ++ Ox 

f i l ter p 0 =0 

f i l ter p (a:x) = app ^(f i l ter p x) Q(p a -> a,;())  

set f  p 0 =0 

set f  p (a:x) = app Q(set f  p x) Q(p a -> @(f a), ;  ())  

f l x  =  x &  x &  x &  x &  x &  x &  x &  x &  x  

f2 X = f l  (f1 x) 

f3 x = f2 ( f2 x) 

f4 X = f3 ( f3 x) 

set_test = set f4 f4 

(TRUE,TRUE,FALSE,TRUE,FALSE,FALSE,TRUE,TRUE.FALSE,TRUE) 
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1 I expert; a forward-chaining production system 

append x y = 9x++9y 

reverse = foldl cons () 

foldl op r 0 = r 

foldl op r (a:x) = foldl op @(op a r) x 

pmap f 0 = 0 

pmap f (a:x) = @(f a) : Q(pmap f x) 

fetch pat dat = (match pat dat) -> dat;() 

pat.ind x = hd x 

pat_var x = tl x 

makea var val = (var.val) 

var elem = hd elem 

val elem = hd (tl elem) 

match alist () () = alist 

match alist () x = () 

match alist x () = () 

match alist (h:pat) (d:dat) 

= (pat.ind h)=%> -> match (append Qalist @((makea (pat_var h) d),)) 

pat dat 

(pat.ind h)=%< -> match alist (@(get_val (pat.var h) alist):Qpat) 

(d;dat) 

(h=d) -> match alist pat dat 

0 

get.val name 0 = 0 

get.val name (h:t) = (var h)=name -> val h; get.val name t 

filter_assertion pat a_base init_alist 

= mapc exist @(match init_alist pat) a.base 

exist X = *(x=()) 

filter.a.stream a.base a.stream pat 

= foldr append () a(pmap (filter.assertion pat a.base) a.stream) 

cascade.patterns a.base a.stream () = a.stream 

cascade.patterns a.base a.stream (prpats) 

= filter.a.stream a.base 0(cascade.patterns a.base a.stream pats) p 
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update ()  a.base = a.base 

update X a.base = (x:a.base) 

replace.var al ist  ()  = ()  

replace.var al ist  (h:t)  

= (pat. ind h)=%< -> (get.val (pat.var h) al ist) :(replace.var al ist  t ) ;  

h :  replace.var al ist  t  

spread.act ions a.base ()  al ist  = a.base 

spread.act ions a.base (a:act ions) al ist  

= spread.act ions new.base act ions al ist  

WHERE new.base = update (replace.var al ist  a) a.base 

feed.to.act ions act ions a.base ()  = a.base 

feed.to.act ions act ions a.base (a;a.stream) 

= feed.to.act ions act ions f .base a.stream 

WHERE f .base = spread.act ions a.base act ions a 

use.rule (assert ion,act ion) a.base 

= feed.to.act ions act ion a.base @(cascade_patterns a.base (() ,)  

(reverse assert ion)) 

forward.chain a.base ()  = a.base 

forward.chain a.base (r truies) 

= forward.chain Q(use.rule r  a.base) rules 

mapc test f  ()  = ()  

mapc test f  (h:t)  = append 0(test tmp -> tmp,;())  0(mapc test f  t )  

WHERE tmp = f  h 

animal.rule = 

( 
(  (  ( '>aniraal",  'has", 'hair") ,) ,  

(  ( '<animal",  ' is",  'mammal"),)  
) .  
(  (  ( '>animal",  'eats",  'meat"),) ,  

(  ( '<animal",  ' is",  'carnivore"),)  

) ,  

(  (  ( '>animal",  'has", 'pointed", ' teeth"),  

( '<animal",  'has", 'c laws"),  

( '<animal",  'has", ' forward", 'eyes")),  
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(  ( '<animal",  ' is",  'carnivore"),)  

) ,  

(  (  ( '>animal '  

( '<animal '  

( '<animal 

( '<animal 

(  ( '<animal 

) 

' is",  'mammal"),  

' is",  'carnivore"),  

'has", ' tawny", 'color"),  

'has", 'dark",  'spots")),  

' is",  'cheetah"),)  

) 

animal.base = 

( 
( ' rob", 'has", 'dark",  'spots"),  

Crob", 'has", ' tawny", 'color"),  

Crob", 'eats",  'meat"),  

Crob", 'has", 'hair") ,  

Csuz", 'has", ' feather") 

expert. test = forward.chain animal.base animal.rule 
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